
Open Build Service (OBS)
Cross-Architecture Build Capabilities

Classic Cross Building

3

Classic Cross Compile Is

• Building a software on architecture A for
architecture B.

• Used when architecture B is not suitable for
developing because:

‒Slow CPU

‒Low memory & storage

‒Convenience: Can't be used as developer
workstation

‒Hardware device not available (yet)

4

Classic Cross Compile is

Embedded developers are used to do

• ./configure –host=armv7l-suse-linux

or

• rpmbuild --target=armv8l-suse-linux

on their ia32 or x86_64 workstation

5

Advantages

• Very fast results

• Work can be done on all kinds of hardware.

6

Disadvantages

• Sources need to support cross compile

• Need to handle dependencies for two architectures

• Build result may differ from native compile

• No real-life testing during development

• No test suite runs usually

Emulated Build

8

Emulated System

• Full emulation (booting target kernel) is usually too
slow and not flexible enough.

• User land emulation using Qemu:

‒ Install qemu-$ARCH binary for running emulated
binaries

‒Register $ARCH binaries to be handled via
qemu-$ARCH binary.
The OBS build script can do this during VM
setup.

9

Setup

openSUSE:Factory openSUSE:Factory:ARM

x86_64
repository

x86_64
repository

qemu-linux-user.rpm
aggregate

armv7l
repository

Fetch and update rpm
via _aggregate

ExportFilter to arm repos

Project Config

ExportFilter: qemu* . armv7l
Preinstall: qemu-linux-user

10

Advantages

• No changes in package sources are needed (almost)

• Using it in OBS allows every developer to build and
run their tests for the target architectures without the
need of real hardware.
=> This makes it possible at all to do maintenance
updates for the openSUSE community for arm.

11

Disadvantages

• Qemu bugs or missing support may have an influence
to the build result.

=> Lots if qemu fixes during 12.2:ARM
development. Qemu thread handling problems are
workarounded

• Emulation overhead may slow down build process too
much.

• We rely currently on our patched qemu using qemu-
$ARCH-binfmt handler, to be pushed upstream.

12

Example

• OpenSUSE:12.2:ARM is using this setup.

• Want to see how it works ?

osc build \
 –alternative-project=openSUSE:Factory:ARM \
 standard armv7l $YOUR_FILE.spec

Tricks for speed improvements

14

The icecream/distcc trick

• Use native hardware or full emulation for building

• Use compiler backend on another, faster host.

• Remote host can have any architecture

• Use icecream or distcc to distribute the job

• ADVANTAGE: scales very very great

• DISADVANTAGE: hard to make it secure

• Code to sync build environments exists SUSE-
internal.

15

Native binaries in qemu-linux-user

• Use some selected binaries for native architecture
during qemu-linux-user emulation.

• Building an acceleration package which repackages
binaries and needed libs into other directory

• ADVANTAGE: Best possible performance

• DISADVANTAGES:

‒ risk that tool is arch dependent

‒ source revision needs to be kept in sync

Future:
Issues To Fix In OBS

17

Open Issues

• Qemu-linux-user thread handling is not reliable.

• kiwi qemu build works only with workaround atm

Work in Progress by B1-Systems:
Transparent Cross Building

19

Transparent Cross Building

• Goal:
‒ Do classic cross builds in OBS

‒ Use toolchain from host architecture (speedup, no
emulation)

‒ Use the same spec-file for host and target architecture
builds

‒ Avoid faking/emulation of build steps where
reasonable/possible

20

Advantages

• Very fast results

• Work can be done on all kinds of hardware.

21

Disadvantages

• Sources need to support cross compile

• Need to handle dependencies for two architectures

• Build result may differ from native compile

• No real-life testing during development

• No test suite runs usually

22

Transparent Cross Building

• Not the intended Goal:
‒ Build existing distribution without any modification

23

Transparent Cross Building

• OBS scheduler need to take multiple architecture in
account

• Toolchain BuildRequires get substituted with packages
for the host architecture

• Setup separated /sysroot for target architecture(s):
‒ /opt/cross-%_target_cpu/

‒ With separated package database

• Exploit cross-compiling support of build environments:
‒ Autotools, CMake, …

24

Transparent Cross Building

• What gets address so it get “transparent”?
‒ Some BuildRequires: need to get substituted with Host

Arch packages or cross-compilers

‒ %check section gets NOOP in the first round

‒ Common build environment calls in spec files need to
make use of common packaging macros:

‒ %configure

‒ %cmake

‒ …

• Goal: use the same build spec file
‒ Move arch conditionals to the project config

25

Transparent Cross Building

• Is this the best solution for me?
‒ Do you have enough time/resources to package your entire

project/product yourself?

‒ Are you willing to fix a lot of packages which are not aware of
cross building?

‒ Emulated cross builds are not fast enough for your
packages/projects?

• If all of above applies, this might be the right solution

• Otherwise emulated or other OBS cross build might be
the right thing for you

26

Transparent Cross Building

• First round:
‒ Initial support to make scheduler aware of multiple

architectures

‒ Enable obs-build to setup separated /sysroot

‒ … and do classic cross builds

• Later:
‒ Optimize scheduler for taking multiple architectures in account

‒ First round: requires that the entire toolchain of host arch is build

‒ Make some use of binfmt Magic

‒ invoke qemu-$ARCH to run %check or other things

‒ But use as much host toolchain as possible

Demonstration

Thank you.

28

Learn more about the
Open Build Service
www.openbuildservice.org

