
Open Build Service (OBS)
Project Workshop

Develop Large Projects

3

Develop Large Project
Best Practices

✔ Breaking Projects Down

✔ Multi-level review

✔ Multi-level integration1

4

Develop Large Projects
Breaking Project Down

Large projects, like the openSUSE distribution, with many
contributors have staging areas where software stacks get
integrated

Devel Project

Package

Branched Project

Package
branch

Request

Project

Package
branch

Request

devel

5

Terminal X

Develop Large Projects
Contributor Branch/Submit

frank@laptop $ osc branch openSUSE:Factory gcal

Note: The branch has been created of a different project,
 Base:System,
 which is the primary location of where development for
 that package takes place.
 That's also where you would normally make changes against.
 A direct branch of the specified package can be forced
 with the --nodevelproject option.

A working copy of the branched package can be checked out with:

osc co home:frank:branches:Base:System/gcal

frank@laptop $ osc submitreq -m "Updated gcal to version 3.6"
created request id 0815

After Making the Changes

6

Develop Large Projects
Developer Asseses Requests

Terminal X

you@laptop $

Terminal X

joe@home $ osc request list Base:System
0815 State:new By:frank When:2012-08-16T15:00:14
 submit: home:frank:branches:Base:System/gcal -> Base:System
 Descr: Updated gcal to version 3.6

joe@home $ osc request show -d 0815
...

joe@home $ osc request accept 0815 -m "Thank you for your contribution :-)"
Result of change request state: ok

joe@home $ osc submitreq Base:System gcal openSUSE:Factory -m "updated to 3.6"
created request id 2342

After Integrating the Changes

mailto:joe@home

7

Collaborating on Packages
Assess Requests

Terminal X

you@laptop $

Terminal X

martin@work $ osc request list openSUSE:Factory
0815 State:new By:frank When:2012-08-16T15:00:14
 submit: home:frank:branches:Base:System/gcal -> Base:System
 Descr: Updated gcal to version 3.6

martin@work $ osc request accept 0815 -m "Accepted, thank you for the update!"
Result of change request state: ok

8

Develop Large Projects
Multi-level review

Base:System

Joe

home:frank

Frank

openSUSE:Factory

Martin

Request

Branch

Request

Branch

ReviewReview

9

Develop Large Projects
Multi-level integration

Base:System

Joe

home:frank

Frank

openSUSE:Factory

Martin

Request

Branch

Request

Branch

IntegrationIntegration

Maintain Large Projects

11

openSUSE:X.y:Update
Reviewer: QA team

Reviewer: Factory team

Approver: maintenance team

Example:

Make an official update

openSUSE:Maintenance:99

home:tom:branches... Incident Request
(Source only)
Maintenance team approval required

Release Request
(Source & Binaries)
Update ID gets generated

openSUSE:Maintenance

Reviewer: Factory team?

Approver: maintenance team

12

openSUSE Update Project Layout

openSUSE:11.4:Update

standard repo

bc.208
(src&bin)

Project

Code Stream Repository

Package Container

Product Update Channel
bc.114

(src&bin)

bc
(link)

114 & 208 are incident numbers.
114: one incident for bc & tar package
208: one incident for bc package

Update channel

patchinfo.208
(src: patchinfo.xml)

(bin: updateinfo.xml&rpms)

tar.114
(src&bin)

tar
(link)

Image build using KIWI

14

 Source Package Image

OBS KIWI Imaging

OBS user submits source to
OBS and gets a product

OBS

15

OBS Imageing compared to other
KIWI solutions 1/2

Running KIWI manually:
‒ All KIWI functionalities are usable.

‒ Best way to hack on KIWI.

‒ Build happens local.

Imaging in Studio:

‒ For fast and easy image creation.

‒ Easy and integrated testing of the image.

‒ Workflow and tool guided image creation.

‒ Interactive working style.

‒ Server side image creation

16

OBS Imageing compared to other
KIWI solutions 2/2

Imaging in Build Service:
‒ Batched processed image building depending on single package

build results.

‒ Recommended for product/installation medias.

‒ Low-Level / Command line interface only.

‒ Allows usage of modified kiwi tool or kiwi descriptions in own
project.

‒ Server side and local building options.

‒ Integrating of regular image builds into maintenance process

for official products.

‒ Supports multiple KIWI version per Image (using it from the
projects).

17

Image Builds from OBS POV

OBS knows currently these types of packages:

‒ rpm/spec builds

‒ deb/dsc builds

‒ KIWI Image (aka known as appliance image)

‒ KIWI Product Image (aka Installation Media)

Planned:

‒ QA builds

‒ MS Windows builds

→ Image builds are just another “package” build for
 the Build Service.

18

Limitations of Image builds within
OBS

The OBS has as highest goal a clean and reproducable image build,
as soon as possible (eg. not waiting for OpenOffice build when not
needed). As a result we have the following limitations compared to
plain KIWI usage:

• Only OBS repositories can be used.
• Own/modified boot description templates needs to

 get packaged.
• Used packages must be unambiguous !
• Currently no pattern support.
• Server may wait for building packages and does

 not start immediately.
 → Local osc build works at any time.

• Non-ISO build results are stored in tar ball,
 extended with Build number.

19

How to setup a KIWI repo

• Create a repository in a project.
‒ Enable wanted architectures

‒ No other repository needed in project config.
KIWI's xml is specifing it.

• Create project config, setting this
 repository to

‒ Type: kiwi

‒ Repotype: none

• Create a package

• Submit adapted KIWI config files.

20

What needs to be changed in KIWI
configs for OBS ?

• The config.xml needs to be suffixed as .kiwi

• Repositories needs to be specified as
 obs://$PROJECT/$REPOSITORY

‒ obs:// refers always to the used build service.

‒ Example: obs://openSUSE:11.1/standard

• Content of root directory needs to get packaged as
 root.tar or root.tar.bz2

• In case of expansion error “have choice” just select
 a package and add it to your package list.

21

Examples

openSUSE Factory Live CD in
 → openSUSE:Factory:Live Project

KDE:Media Live CDs in
 → KDE:Medias Project

OBS worker images (netboot deployment) in

 → openSUSE:Tools Project

Product preload rescue disk in

 → internal Devel:Moblin Project

JeOS based on SLES 10 and 11 in

 → internal Devel:JeOS Project

https://build.opensuse.org/project/show?project=openSUSE:Factory:Live
https://build.opensuse.org/project/show?project=KDE:Medias
https://build.opensuse.org/package/show?package=obs-worker-image&project=openSUSE:Tools
https://build.suse.de/package/show?package=Image&project=Devel:Moblin
https://build.suse.de/project/show?project=Devel:JeOS

22

Future Plans

• Support patterns

• Integrate into QA system for testing a produced
 build automatically (NOT interactive).

• Connect to SUSE Studio somehow for kiwi
 config exchange

Installation Media Creation
(aka Product Creation)

24

What are Products ?

• Products are SUSE specific.

• Products are medias with plain rpm packages,
 to be handled via YaST or zypper.

• The Media may be bootable.

• Medias can be CD iso files, DVD iso files or FTP
 trees.

• The media may support multiple architectures.

• Examples are the openSUSE 11.1 DVD or the
 Non-OSS FTP tree Add-On.

25

A Product from KIWI POV

• A product KIWI config looks complete different
 to a system image. (Own section)

• No automatic dependency solving between
 packages.

• It works only with local rpm repositories
 currently.

• KIWI needs to deal with
‒ RPM package which are used for installation

‒ Meta packages (get extracted on the media)

‒ Generate meta data

26

A Product In Detail

A typical product media consist of:
• An rpm repository
• Meta data

‒ Patterns (prepared package selections)

‒ Bootable initrd starting YaST for installation

‒ Theming

‒ EULA / License Information

A product may consist of multiple product medias !

27

Example Product

OpenSUSE 11.1 comes as:
‒ DVD5 for i586, x86_64 and ppc each

‒ DVD9 for i586 and x86_64 together

‒ FTP tree for i586 and x86_64 together

‒ FTP tree for ppc and ppc64 together

‒ NET boot media i586, x86_64 and ppc each

OpenSUSE 11.1 Non-OSS comes as:

‒ CD for i586, x86_64 and ppc each

‒ FTP tree for i586 and x86_64 together

‒ FTP tree for ppc

28

The Problem

Each product media needs
• An own kiwi config
• An own release flavor package
• Meta packages to be put one the media.

This means in each of them is some data which needs
to be kept in sync. Like package lists or the Beta/RC
version.

29

The Solution

• We have product configs in Build Service,
 specifing all medias for a Product.

• Multiple Products from one code stream can
 share definitions(eg SLE-11 or openSUSE:11.1).

• The OBS product converter creates
‒ All kiwi config files

‒ A spec file for release packages, including all
flavors.

‒ Patterns on media (in future)

• Product definitions are stored in “_product”
 package, all resulting sources gets generated
 as “_product:....” packages on checkin time.

30

Nice New Features

• KIWI allows to collect automatically all required

 source and debug packages.

• Not Yet: One place to maintain package lists
 for products and patterns.

• Not Yet: Automatic dependency solving for
 products optional.

31

Examples and Documentation

• openSUSE 11.1 was the first product using this.
• SLE-11 based products followed.

• Product Definition wiki pages
• And of course the general KIWI documentation

 describing how to create an installation source
 manually.

https://build.opensuse.org/package/show?package=_product&project=openSUSE:11.1
https://build.suse.de/package/show?package=_product&project=SUSE:SLE-11:GA
http://en.opensuse.org/Build_Service/Product_Definition
http://svn.berlios.de/wsvn/kiwi/kiwi-head/doc/kiwi.pdf?op=file&rev=0&sc=0

32

Future

• Adapt KIWI after PDB migration
‒ Obsolete some meta packages

‒ Obsolete some autobuild tools with native
implementation

→ Significant speed up hopefully

• Support Driver Update Disks in KIWI

• Support pattern generation based on product
 config

• Code/return value cleanup

• Media overflow handling ?

• Optional package dependency resolving ?
• KIWI remote repository support ?

Thank you.

33

Learn more about the
Open Build Service
www.openbuildservice.org

