
Administrator Guide

Administrator Guide: Open Build Service
by Karsten Keil

Publication Date: 03/13/2024

SUSE LLC
1800 South Novell Place
Provo, UT 84606
USA

https://documentation.suse.com

Copyright © 2016

Copyright © 2006– 2024 SUSE LLC and contributors. All rights reserved.

https://documentation.suse.com

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Docu-

mentation License, Version 1.2 or (at your option) version 1.3; with the Invariant Section being this copyright

notice and license. A copy of the license version 1.2 is included in the section entitled “GNU Free Documentation

License”.

For SUSE trademarks, see http://www.suse.com/company/legal/ . All other third-party trademarks are the prop-

erty of their respective owners. Trademark symbols (®, ™ etc.) denote trademarks of SUSE and its affiliates.

Asterisks (*) denote third-party trademarks.

All information found in this book has been compiled with utmost attention to detail. However, this does not

guarantee complete accuracy. Neither SUSE LLC, its affiliates, the authors nor the translators shall be held liable

for possible errors or the consequences thereof.

http://www.suse.com/company/legal/

Contents

About this Guide vii

1 Available Documentation vii

2 Feedback vii

3 Documentation Conventions viii

4 Contributing to the Documentation ix

1 Installation and Configuration 1
1.1 Planning 1

Resource Planning 1

1.2 Simple Installation 2

Back-end Installation 2 • Front-end Installation 7 • Online

Configuration 10

1.3 Worker Farm 13

1.4 Distributed Setup 13

1.5 Monitoring 16

Endpoint Checks 16 • Common Checks 17 • Other Checks 19

2 File System Overview 20

2.1 Configuration Files 20

Front-end Configuration 20 • Back-end Configuration 29

2.2 Log Files 50

Front-end 50 • Back-end 50

2.3 /srv/obs Tree 51

build Directory 51 • cloudupload Directory 52 • db

Directory 52 • diffcache Directory 52 • events

Directory 52 • info Directory 52 • jobs Directory 53 • log

iv Administrator Guide

Directory 53 • projects Directory 53 • remotecache

Directory 53 • repos Directory 53 • repos_sync

Directory 53 • run Directory 53 • sources Directory 54 • trees

Directory 54 • upload Directory 54 • workers Directory 54

2.4 Metadata 55

OBS Revision Control 55 • Project Metadata 56 • Package

Metadata 58 • Attribute Metadata 58 • Job Files 59

3 Security Concepts 61

3.1 General Paradigm 61

Frontend 61 • Build Environment 62 • Source Revision

System 63 • Permission Handling 63 • Signature Handling 63

3.2 Trust Zones 64

Public Zones 64 • Demilitarized Zone (DMZ) 65 • Internal

Zone 66 • Worker Zone 67 • Signing Server 67

4 Administration 69

4.1 Tools 69

obs_admin 69 • osc 72

4.2 Managing Build Targets 75

Interconnect 75 • Importing Distributions 76

4.3 Source Services 76

Using Services for Validation 77 • Different Modes When Using

Services 77 • Storage of Source Service Definitions 79 • Dropping a

Source Service Again 79

4.4 Source Publisher 79

Configuring Source Publisher 80 • Considerations 80

4.5 Dispatch Priorities 80

The /build/_dispatchprios API Call 81 • dispatch_adjust Array 82

4.6 Publisher Hooks 83

Configuring Publisher Hooks 83 • Example Publisher Scripts 85

v Administrator Guide

4.7 Unpublisher Hooks 86

Configuring Unpublisher Hooks 87 • Example Unpublisher Scripts 88

4.8 Managing Users and Groups 90

User and Group Roles 90 • Standalone User and Group

Database 91 • Users and Group Maintainers 91 • Gravatar

for Groups 91 • Proxy Mode 91 • LDAP/Active

Directory 92 • Authentication Methods 98

4.9 Message Bus for Event Notifications 101

RabbitMQ 101

4.10 Backup 110

Places to consider 110 • Backup strategies 111

4.11 Restore 112

Check and repair database inconsistencies 112 • Binaries 112

4.12 Repair Data Corruption 113

4.13 Spider Identification 113

4.14 Worker in Kubernetes 114

5 Troubleshooting 119

5.1 General Hints 119

5.2 Debugging Front-end Problems 120

6 Setting Up a Local OBS Instance 121

6.1 Testing OBS on Microsoft Windows Using VMware Player 121

6.2 Installing a Readymade OBS Appliance in a VirtualBox 122

6.3 First Steps with Your New OBS Server 123

A GNU Licenses 125

vi Administrator Guide

About this Guide

This guide is part of the Open Build Service documentation. These books are considered to
contain only reviewed content, establishing the reference documentation of OBS.

This guide does not focus on a specific OBS version. It is also not a replacement of the docu-
mentation inside of the openSUSE Wiki (https://en.opensuse.org/Portal:Build_Service) . However,
content from the wiki may be included in these books in a consolidated form.

1 Available Documentation
The following documentation is available for OBS:

Book “Administrator Guide”

This guide offers information about the initial setup and maintenance for running Open
Build Service instances.

Book “User Guide”

This guide is intended for users of Open Build Service. The rst part describes basic work-
flows for working with packages on Open Build Service. This includes checking out a pack-
age from an upstream project, creating patches, branching a repository, and more. The
following parts go into more detail and contain information on backgrounds, setting up
your computer for working with OBS, and usage scenarios. The Best Practices part offers
step-by-step instructions for the most common features of the Open Build Service and the
openSUSE Build Service. The last part covers ideas and motivations, concepts and process-
es of the Open Build Service.

2 Feedback
Several feedback channels are available:

Bugs and Enhancement Requests

Help for openSUSE is provided by the community. Refer to https://en.opensuse.org/Por-

tal:Support for more information.

Bug Reports

To report bugs for Open Build Service, go to https://bugzilla.opensuse.org/ , log in, and
click New.

vii Available Documentation

https://en.opensuse.org/Portal:Build_Service
https://en.opensuse.org/Portal:Support
https://en.opensuse.org/Portal:Support
https://bugzilla.opensuse.org/

Mail

For feedback on the documentation of this product, you can also send a mail to doc-
team@suse.com . Make sure to include the document title, the product version and the
publication date of the documentation. To report errors or suggest enhancements, provide
a concise description of the problem and refer to the respective section number and page
(or URL).

3 Documentation Conventions
The following notices and typographical conventions are used in this documentation:

/etc/passwd : directory names and le names

PLACEHOLDER : replace PLACEHOLDER with the actual value

PATH : the environment variable PATH

ls , --help : commands, options, and parameters

user : users or groups

package name : name of a package

Alt , Alt – F1 : a key to press or a key combination; keys are shown in uppercase as on
a keyboard

File, File Save As: menu items, buttons

Dancing Penguins (Chapter Penguins, ↑Another Manual): This is a reference to a chapter in
another manual.

Commands that must be run with root privileges. Often you can also prefix these com-
mands with the sudo command to run them as non-privileged user.

root # command
geeko > sudo command

Commands that can be run by non-privileged users.

geeko > command

Notices

viii Documentation Conventions

Warning: Warning Notice
Vital information you must be aware of before proceeding. Warns you about security
issues, potential loss of data, damage to hardware, or physical hazards.

Important: Important Notice
Important information you should be aware of before proceeding.

Note: Note Notice
Additional information, for example about differences in software versions.

Tip: Tip Notice
Helpful information, like a guideline or a piece of practical advice.

4 Contributing to the Documentation
The OBS documentation is written by the community. And you can help too!

Especially as an advanced user or an administrator of OBS, there will be many topics where
you can pitch in even if your English is not the most polished. Conversely, if you are not very
experienced with OBS but your English is good: We rely on community editors to improve the
language.

This guide is written in DocBook XML which can be converted to HTML or PDF documentation.

To clone the source of this guide, use Git:

git clone https://github.com/openSUSE/obs-docu.git

To learn how to validate and generate the OBS documentation, see the le README .

To submit changes, use GitHub pull requests:

1. Fork your own copy of the repository.

2. Commit your changes into the forked repository.

ix Contributing to the Documentation

3. Create a pull request. This can be done at https://github.com/openSUSE/obs-docu .

It is even possible to host instance-specific content in the official Git repository, but it needs to
be tagged correctly. For example, parts of this documentation are tagged as <para os="open-
suse"> . In this case, the paragraph will only become visible when creating the openSUSE ver-
sion of a guide.

x Contributing to the Documentation

https://github.com/openSUSE/obs-docu

1 Installation and Configuration

1.1 Planning

For testing your own OBS instance, or for small setups, such as if you only want to package a
few scripts into RPMS and create proper installation sources from them, the ready-to-use obs-
server appliance images are the easiest way. You can download them from http://openbuildser-

vice.org/download/ .

However, to use the OBS for large Linux software development with many packages, projects
and users, consider setting up a regular installation. Depending on the number of users, projects,
and architectures, you can split up the back-end (called partitioning) and have separate hosts
for the front-end and the database.

For most installations, it is OK to run everything except workers on one host, if it has sufficient
resources.

For flexibility and if you want some kind of high availability it is recommended to use virtual-
ization for the different components.

1.1.1 Resource Planning

Normally, for an small or middle-sized installation, a setup with everything on one host (except
workers) is sufficient. You should have a separate /srv volume for the back-end data. We rec-
ommend that you use XFS as le system.

For each scheduler architecture, you should add 4 GB RAM and one CPU core. For each build
distribution you should add at least 50GB disk space per architecture.

A medium instance with about 50 users can easily run on a machine with 16GB RAM, 4 cores
and 1 TB storage. The storage, of course, depends on the size of your projects and how often
you have new versions.

For bigger installations, you can use separate networks for back-end communication, workers
and front-end.

1 Planning

http://openbuildservice.org/download/
http://openbuildservice.org/download/

As of May 2021, the reference installation on build.opensuse.org, which has a lot of users and
distributions, runs on a partitioned setup with:

a mysql cluster as database

api-server: 16GB RAM, 4 cores, 50GB disk

separate binary back-ends (scheduler, dispatcher, reposerver, publisher, warden)

source server: 11 GB RAM, 4 cores, 3 TB disk. The RAM is used mainly for caching.

main back-end: 62 GB RAM (oversized), 16TB disk

a lot of workers (see - https://build.opensuse.org/monitor)

For build time and performance, the count and performance of available worker hosts is more
important than the other parts.

1.2 Simple Installation
In this document, we call "simple installation" an OBS installation where all OBS services are
running on the same machine.

Important
It is very important that you read the README.SETUP le coming with your OBS ver-
sion and follow the instructions there, because it may provide additional, version-specific
information.

Before you start the installation of the OBS, you should make sure that your hosts have the
correct fully qualified hostname, and that DNS is working and can resolve all names.

1.2.1 Back-end Installation

The back-end hosts all sources and built packages. It also schedules the jobs. To install it, install
the "obs-server" package. After installation, it's a good idea to check the service configuration
in /usr/lib/obs/server/BSConfig.pm, although the defaults should be good enough for simple
cases.

2 Simple Installation

https://build.opensuse.org/monitor

Note
Read more about configuring the backend in Section 1.4, “Distributed Setup”.

The back-end consists of a number of systemd units (services):

TABLE 1.1: SERVICES

Service Description Remark

obssrcserver.service Source server

obsrepserver.ser-
vice

Repository server

obsservice.service Source services server

obsdodup.service Repository metadata down-
load

since 2.7

obsdeltastore.ser-
vice

Delta storage since 2.7

obsscheduler.ser-
vice

Scheduler

obsdispatcher.ser-
vice

Dispatcher proxy

obsservicedis-
patch.service

Dispatcher

obspublisher.ser-
vice

Publisher

obssigner.service Signer proxy

obssignd.service Signer

obswarden.service Warden

3 Back-end Installation

Service Description Remark

obscloudupload-
worker.service

Cloud upload worker Only needed
for cloud up-
load feature

obscloudupload-
server.service

Cloud upload server Only needed
for cloud up-
load feature

These services are controlled via systemctl. Basically, you can enable/disable a service to start
when the system boot, and you can start/stop/restart it in a running system as well. For
more information, see the systemctl man page (https://manpages.opensuse.org/Tumbleweed/sys-

temd/systemctl.1.en.html#COMMANDS) . For example, to restart the repository server, do:

systemctl restart obsrepserver.service

When starting the various services, obssrcserver.service (the source server) must be started rst,
and obsrepservice.service (the repository server) second, followed by the remaining services in
any order. When installing manually, you will need to rst enable the services with

systemctl enable <name>

so they start automatically at boot. In this case, the start order will be enforced via the respective
systemd unit les. Should you want to start the services manually, you will need to ensure the
correct ordering yourself, by starting the source server rst and the repository server second,
like so:

systemctl start obssrcserver.service
systemctl start obsrepserver.service

followed by the remaining services in any order.

Warning
The start-up commands start services which are accessible from the outside. If the system
is connected to an untrusted network, either block the ports with a firewall or do not
run the commands at all.

4 Back-end Installation

https://manpages.opensuse.org/Tumbleweed/systemd/systemctl.1.en.html#COMMANDS
https://manpages.opensuse.org/Tumbleweed/systemd/systemctl.1.en.html#COMMANDS

1.2.1.1 Cloud Upload Setup

In order to setup the Cloud Upload feature you will need to configure the tools required per each
cloud provider. Right now we only support the AWS Amazon Cloud (https://aws.amazon.com)
and Microsoft Azure (https://portal.azure.com) as providers.

Before you can start uploading images to the Amazon Web Services (AWS) and/or Microsoft
Azure, you have to:

1. Install the obs-cloud-uploader package

zypper in obs-cloud-uploader

2. Start the cloud upload services

systemctl start obsclouduploadworker.service
systemctl start obsclouduploadserver.service

At last you have to register the cloud uploader service in /usr/lib/obs/server/BSConfig.pm, for
example, by adding following line:

our $clouduploadserver = "http://$hostname:5452";

Warning
Ensure that the system time of your cloud uploader instance is correct. AWS is relying
on the timestamps of the requests it receives. Having an incorrect system time will cause
cloud uploads to fail.

1.2.1.1.1 AWS Amazon Cloud

1.2.1.1.1.1 Authentication Workflow

We are going to use the role based authentication provided by Amazon to enable the OBS in-
stance to upload images to other user's accounts.

The users will obtain an external ID (automatically created and unique) and the OBS account
ID to create an Identity and Access Management (IAM) role. After the user created the role, he
needs to provide the Amazon Resource Name (ARN) of the role to OBS. OBS will use this ARN

5 Back-end Installation

https://aws.amazon.com
https://portal.azure.com

to obtain temporary credentials, therefore an uploader account is necessary which we need to
configure (see AWS authentication credentials setup). OBS will use the ARN to obtain temporary
credentials for the users account to upload the appliance. The ARN and the external ID are not
considered as a secret.

The whole workflow is described in the AWS documentation (https://docs.aws.amazon.com/IAM/

latest/UserGuide/id_roles_create_for-user_externalid.html) .

1.2.1.1.1.2 Credentials Setup

For uploading images to AWS, OBS is using the AWS CLI (https://aws.amazon.com/cli) tool.
Before you can start uploading your images, you have to enter the AWS credentials to the /
etc/obs/cloudupload/.aws/credentials configuration le. These credentials will then be used
by OBS to retrieve the temporary credentials from the ARN provided by users. More informa-
tion about IAM role base authorization can be found in the Amazon documentation (https://doc-

s.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html)).

1.2.1.1.2 Microsoft Azure

1.2.1.1.2.1 Authentication Workflow

The authentication is done via Microsoft's Active Directory. The user has to create a new appli-
cation and needs to provide those two credentials to OBS:

1. Application ID
The Application ID is a unique ID that represents an Active Directory Application.

2. Application Key
The Application Key can be generated for every application and is the password.

OBS communicates with the REST API of Microsoft Azure to authenticate and upload images.

1.2.1.1.2.2 Configuration

The Application ID and the Application Key will be stored encrypted in the database. As for
that, it's required to generate an SSL secret and public key that has to be stored on the server
where the obs-cloud-uploader package has been installed.

6 Back-end Installation

https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://aws.amazon.com/cli
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles_create_for-user_externalid.html

To generate that SSL certificate, execute the following commands:

cd /etc/obs/cloudupload
openssl genrsa -out secret.pem
openssl rsa -in secret.pem -out _pubkey -outform PEM -pubout

1.2.1.1.2.3 Credentials setup

It's important that the public key is named _pubkey and the secret key is named secret.pem
and are kept in /etc/obs/cloudupload.

1.2.2 Front-end Installation

You need to install the "obs-api" package for this and a MySQL server.

1.2.2.1 MySQL Setup

Make sure that the mysql server is started on every system reboot (use "insserv mysql" for per-
manent start). You should run mysql_secure_installation and follow the instructions.

Create the empty production databases:

mysql -u root -p
mysql> create database api_production;
mysql> quit

Use a separate MySQL user (for example, obs) for the OBS access:

mysql -u root -p
mysql> create user 'obs'@'%' identified by 'TopSecretPassword';
mysql> create user 'obs'@'localhost' identified by 'TopSecretPassword';
mysql> GRANT all privileges ON api_production.*
 TO 'obs'@'%', 'obs'@'localhost';
mysql> FLUSH PRIVILEGES;
mysql> quit

Configure your MySQL user and password in the "production" section of the api config: /srv/
www/obs/api/config/database.yml

Example:

MySQL (default setup). Versions 4.1 and 5.0 are recommended.

7 Front-end Installation

#
Get the fast C bindings:
gem install mysql
(on OS X: gem install mysql -- --include=/usr/local/lib)
And be sure to use new-style password hashing:
http://dev.mysql.com/doc/refman/5.0/en/old-client.html

production:
 adapter: mysql2
 database: api_production
 username: obs
 password: TopSecretPassword
 encoding: utf8
 timeout: 15
 pool: 30

Now populate the database

cd /srv/www/obs/api/
sudo RAILS_ENV="production" rake db:setup
sudo RAILS_ENV="production" rake writeconfiguration
sudo chown -R wwwrun.www log tmp

Now you are done with the database setup.

1.2.2.2 Apache Setup

Now we need to configure the Web server. By default, you can reach the familiar web user
interface and also api both on port 443 speaking https. Repositories can be accessed via http
on port 82 (once some packages are built). An overview page about your OBS instance can be
found behind 'http://localhost'.

The obs-api package comes with an Apache vhost le, which does not need to get modified
when you stay with these defaults: /etc/apache2/vhosts.d/obs.conf

Install the required packages via

zypper in obs-api apache2 apache2-mod_xforward rubygem-passenger-apache2 memcached

Add the following Apache modules in /etc/sysconfig/apache2 :

APACHE_MODULES="... passenger rewrite proxy proxy_http xforward headers socache_shmcb"

Enable SSL in /etc/sysconfig/apache2 via

8 Front-end Installation

APACHE_SERVER_FLAGS="SSL"

For production systems you should order official SSL certificates. For testing follow the instruc-
tions to create a self signed SSL certificate:

mkdir /srv/obs/certs
openssl genrsa -out /srv/obs/certs/server.key 1024
openssl req -new -key /srv/obs/certs/server.key \
 -out /srv/obs/certs/server.csr
openssl x509 -req -days 365 -in /srv/obs/certs/server.csr \
 -signkey /srv/obs/certs/server.key -out /srv/obs/certs/server.crt
cat /srv/obs/certs/server.key /srv/obs/certs/server.crt \
 > /srv/obs/certs/server.pem

To allow the usage of https API in Web UI code you need to trust your certificate as well:

cp /srv/obs/certs/server.pem /etc/ssl/certs/
c_rehash /etc/ssl/certs/

1.2.2.3 API Configuration

Check and edit /srv/www/obs/api/config/options.yml

If you change the hostnames/ips of the API, you need to adjust frontend_host accordingly. If
you want to use LDAP, you need to change the LDAP settings as well. Look at the Section 4.8,

“Managing Users and Groups” for details. You will nd examples and more details in the Section 2.1,

“Configuration Files”.

It is strongly recommended to enable

use_xforward: true

as well here, to tell Rails to forward requests to the back-end for asynchronous processing.
(Without this setting, the front-end will block while the back-end handles each request.)

Afterwards, you can start the OBS API and make it permanent via

systemctl enable apache2
systemctl start apache2

systemctl enable obs-api-support.target
systemctl start obs-api-support.target

systemctl enable memcached.service

9 Front-end Installation

systemctl start memcached.service

Now you have you own empty instance running and you can do some online configuration steps.

1.2.3 Online Configuration

To customize the OBS instance you may need to configure some settings via the OBS API and
Web user interface.

First you should change the password of the Admin account, for this you need rst login as user
Admin in the Web UI with the default password "opensuse". Click on the Admin link (right top
of the page), here you can change the password.

After changing the Admin password, set up osc to use the Admin account for more changes.
Here an example:

osc -c ~/.obsadmin_osc.rc -A https://api.testobs.org

Follow the instructions on the terminal.

Warning
The password is stored in clear text in this le by default, so you need to give this le
restrictive access rights, only read/write access for your user should be allowed. osc
allows to store the password in other ways (in keyrings for example), refer to the osc
documentation for this.

Now you can check out the main configuration of the OBS:

osc -c ~/.obsadmin_osc.rc api /configuration >/tmp/obs.config
cat /tmp/obs.config
<configuration>
 <title>Open Build Service</title>
 <description>
 <p class="description">
 The Open Build Service (OBS)
 is an open and complete distribution development platform that provides a
 transparent
 infrastructure for development of Linux distributions, used by openSUSE, MeeGo
 and other distributions.
 Supporting also Fedora, Debian, Ubuntu, RedHat and other Linux distributions.
 </p>

10 Online Configuration

 <p class="description">
 The OBS is developed under the umbrella of the <a href="http://
www.opensuse.org">openSUSE project<
 /a>. Please find further informations on the <
 a href="http://wiki.opensuse.org/openSUSE:Build_Service">openSUSE Project wiki
 pages.
 </p>

 <p class="description">
 The Open Build Service developer team is greeting you. In case you use your OBS
 productive
 in your facility, please do us a favor and add yourself at <
 a href="http://wiki.opensuse.org/openSUSE:Build_Service_installations">
 this wiki page. Have fun and fast build times!
 </p>
 </description>
 <name>private</name>
 <download_on_demand>on</download_on_demand>
 <enforce_project_keys>off</enforce_project_keys>
 <anonymous>on</anonymous>
 <registration>allow</registration>
 <default_access_disabled>off</default_access_disabled>
 <allow_user_to_create_home_project>on</allow_user_to_create_home_project>
 <disallow_group_creation>off</disallow_group_creation>
 <change_password>on</change_password>
 <hide_private_options>off</hide_private_options>
 <gravatar>on</gravatar>
 <cleanup_empty_projects>on</cleanup_empty_projects>
 <disable_publish_for_branches>on</disable_publish_for_branches>
 <admin_email>unconfigured@openbuildservice.org</admin_email>
 <unlisted_projects_filter>^home:.+</unlisted_projects_filter>
 <unlisted_projects_filter_description>home projects</
unlisted_projects_filter_description>
 <schedulers>
 <arch>armv7l</arch>
 <arch>i586</arch>
 <arch>x86_64</arch>
 </schedulers>
</configuration>

Important
unlisted_projects_filter only admit Regular Expression (see RLIKE specifications of
MySQL/MariaDB for more information) and unlisted_projects_filter_description is part
of the link shown in the project list for filtering

11 Online Configuration

You should edit this le according to your preferences, then sent it back to the server:

osc -c ~/.obsadmin_osc.rc api /configuration -T /tmp/obs.config

If you want to use an interconnect to another OBS instance to reuse the build targets you can
do this as Admin via the Web UI or create a project with a remoteurl tag (see Section 2.4.2,

“Project Metadata”)

<project name="openSUSE.org">
 <title>openSUSE.org Project</title>
 <description>
 This project refers to projects hosted on the Build Service
[...]

Use openSUSE.org:openSUSE:12.3 for example to build against the
openSUSE:12.3 project as specified on the opensuse.org Build Service.
</description>
 <remoteurl>https://api.opensuse.org/public</remoteurl>
</project>

You can create the project using a le with the above content with osc like this:

osc -c ~/.obsadmin_osc.rc meta prj openSUSE.org -F /tmp/openSUSE.org.meta

You also can import binary distribution, see Section 4.2.2, “Importing Distributions” for this.

The OBS has a list of available distributions used for build. This list is displayed to user, if they
are adding repositories to their projects. This list can be managed via the API path /distributions

osc -c ~/.obsadmin_osc.rc api /distributions > /tmp/distributions.xml

Example distributions.xml le:

<distributions>
 <distribution vendor="SUSE" version="SLE-12-SP1" id="137">
 <name>SLE-12-SP1</name>
 <project>SUSE:SLE-12-SP1</project>
 <reponame>SLE-12-SP1</reponame>
 <repository>standard</repository>
 <link>http://www.suse.com/</link>
 <icon url="https://static.opensuse.org/distributions/logos/suse-SLE-12-8.png"
 width="8" height="8"/>
 <icon url="https://static.opensuse.org/distributions/logos/suse-SLE-12-16.png"
 width="16" height="16"/>
 <architecture>x86_64</architecture>
 </distribution>

12 Online Configuration

</distributions>

You can add your own distributions here and update the list on the server:

osc -c ~/.obsadmin_osc.rc api /distributions -T /tmp/distributions.xml

1.3 Worker Farm
To not burden your OBS back-end daemons with the unpredictable load package builds can
produce (think someone builds a monstrous package like LibreOffice) you should not run OBS
workers on the same host as the rest of the back-end daemons.

Important
You back-end need to be configured to use the correct hostnames for the repo and source
server and the ports need to be reachable by the workers. Also, the IP addresses of the
workers need to be allowed to connect the services. (look at the /usr/lib/obs/server/BS-
Config.pm::ipaccess array).

You can deploy workers quite simply using the worker appliance. Or install a minimum system
plus the obs-worker package on the hardware.

Edit the /etc/sysconfig/obs-server le, at least OBS_SRC_SERVER, OBS_REPO_SERVERS and
OBS_WORKER_INSTANCES need to be set. More details in the Section 2.1, “Configuration Files”.

start the worker:

systemctl enable obsworker
systemctl start obsworker

1.4 Distributed Setup
All OBS back-end daemons can also be started on individual machines in your network. Also,
the front-end Web server and the MySQL server can run on different machines. Especially for
large scale OBS installations this is the recommended setup.

A setup with partitioning is very similar to the steps of the simple setup. Here we are only
mention the differences to the simple setup.

13 Worker Farm

Note
You need to make sure that the different machines can communicate via the network, it
is very recommended to use a separate network for this to isolate it from the public part.

On all back-end hosts you need to install the obs-server package. On the front-end host you need
to install the obs-api package.

Important
Only one source server instance can be exist on a single OBS installation.

The binary back-end can be split on project level, this is called partitioning.

On one partition following services needs to be configured and run:

1. repserver

2. schedulers

3. dispatcher

4. warden

5. publisher

You do not need to share any directories on File System level between the partitions.

Here some example for partitioning:

1. A main partition for everything not in the others (host mainbackend)

2. A home partition for all home projects of the users (host homebackend)

3. A release partition for released software projects (host releasebackend)

The configuration is done in the back-end config le /usr/lib/obs/server/BSConfig.pm. Most
parts of the le can be shared between the back-ends.

Here the important parts of the mainbackend of out testobs.org installation:

[...]
my $hostname = Net::Domain::hostfqdn() || 'localhost';
IP corresponding to hostname (only used for $ipaccess); fallback to localhost since
 inet_aton may fail to resolve at shutdown.
my $ip = quotemeta inet_ntoa(inet_aton($hostname) || inet_aton("localhost"));

14 Distributed Setup

my $frontend = 'api.testobs.org'; # FQDN of the Web UI/API server if it's not $hostname

If defined, restrict access to the backend servers (bs_repserver, bs_srcserver,
 bs_service)
our $ipaccess = {
 '127\..*' => 'rw', # only the localhost can write to the backend
 "^$ip" => 'rw', # Permit IP of FQDN
 "10.20.1.100" => 'rw', # Permit IP of srcsrv.testobs.org
 "10.20.1.101" => 'rw', # Permit IP of mainbackend.testobs.org
 "10.20.1.102" => 'rw', # Permit IP of homebackend.testobs.org
 "10.20.1.103" => 'rw', # Permit IP of releasebackend.testobs.org
 '10.20.2.*' => 'worker', # build results can be delivered from any client in the
 network
};

IP of the Web UI/API Server (only used for $ipaccess)
if ($frontend) {
 my $frontendip = quotemeta inet_ntoa(inet_aton($frontend) || inet_aton("localhost"));
 $ipaccess->{$frontendip} = 'rw' ; # in dotted.quad format
}

also change the SLP reg files in /etc/slp.reg.d/ when you touch hostname or port
our $srcserver = "http://srcsrv.testobs.org:5352";
our $reposerver = "http://mainbackend.testobs.org:5252";
our $serviceserver = "http://service.testobs.org:5152";

Needed if you want to use the cloud upload feature
our $clouduploadserver = "http://$hostname:5452";

#
our @reposervers = ("
 http://mainbackend.testobs.org:5252,
 http://homebackend.testobs.org:5252,
 http://releasebackend.testobs.org:5252
");

you can use different ports for worker connections
our $workersrcserver = "http://w-srcsrv.testobs.org:5353";
our $workerreposerver = "http://w-mainbackend.testobs.org:5253";
[...]
our $partition = 'main';
#
this defines how the projects are split. All home: projects are hosted
on an own server in this example. Order is important.
our $partitioning = [
 'home:' => 'home',

15 Distributed Setup

 'release' => 'release'
 '.*' => 'main',
];
our $partitionservers = {
 'home' => 'http://homebackend.testobs.org:5252',
 'release' => 'http://releasebackend.testobs.org:5252',
 'main' => 'http://mainbackend.testobs.org:5252',
};
[...]

On the other partition server you need to change "our $reposerver", "our $workerreposerver"
and "our $partition".

On all partition servers you need to start:

systemctl start obsrepserver.service
systemctl start obsscheduler.service
systemctl start obsdispatcher.service
systemctl start obspublisher.service
systemctl start obswarden.service

On the worker machines you should set of repo servers in the OBS_REPO_SERVERS variable.
You can also define workers with a subset of the repo servers to prioritize partitions.

1.5 Monitoring
In this chapter you will nd some general monitoring instructions for the Open Build Service. All
examples are based on Nagios plugins, but the information provided should be easily adaptable
for other monitoring solutions.

1.5.1 Endpoint Checks

1.5.1.1 HTTP Checks: Checking Whether the HTTP Server Responds

This check will output a critical if the HTTP server with ip address 172.19.19.19 (-I
172.19.19.19) listening on port 80 (-p 80) does not answer and output a warning if the HTTP
return code is not 200. The server name that will be used is server (-H server) which is important
if different virtual hosts are listening on the same port.

check_http -H server -I 172.19.19.19 -p 80 -u http://server

16 Monitoring

The same check, but this time it will check a ssl enabled HTTP server.

check_http -S -H server -I 172.19.19.19 -p 443 -u https://server

It is also possible to check the presence of a certain string in the HTTP response. In this case it
will check for the string Source Service Server.

check_http -s "Source Service Server" -S -H server -I 172.19.19.19 -p 5152

Open Build Service HTTP endpoints that should be checked:

1. Web Interface / API: port 443

2. Repository Server: port 82

3. Package Repository Server: port 5252

4. Source Repository Server: port 5352

5. Source Service Server: port 5152

6. Cloud Upload Server: port 5452

1.5.2 Common Checks

This is a list of common checks that should be run on each individual server.

1.5.2.1 Disk Space: Checking Available Disk Space

This check will output a warning if less than 10 percent disk space is available (-w 10) and
output a critical if less than 5 percent disk space are available (-c 5). It will check all le systems
except le systems with type none (-x none).

check_disk -w 10 -c 5 -x none

1.5.2.2 Memory Usage: Checking Available Memory

This check will output a warning if less than 10 percent memory is available (-w 10) and output
a critical if less than 5 percent memory is available (-c 5). OS caches will be counted as free
memory (-C) and it will check the available memory (-f). check_mem.pl is not a standard Nagios
plugin and can be downloaded at https://exchange.nagios.org/ .

17 Common Checks

https://exchange.nagios.org/

check_mem.pl -f -C -w 10 -c 5

1.5.2.3 NTP: Checking Date and Time

This check will compare the local time with the time provided by the NTP server pool.ntp.org
(-H pool.ntp.org). It will output a warning if the time differs by 0.5 seconds (-w 0.5) and output
a critical if the time differs by 1 seconds (-c 1).

check_ntp_time -H pool.ntp.org -w 0.5 -c 1

1.5.2.4 Ping: Checking That the Server Is Alive

This plugin checks if the server responds to a ping request and it will output a warning if the
respond time exceeds 200ms or 30 percent package loss (-w 200.0,30%) and output a critical if
the respond time exceeds 500ms or 60 percent package loss.

check_icmp -H server -w 200.0,30% -c 500.0,60%

1.5.2.5 Load: Checking the Load on the Server

This check will output a warning if the load value exceeded 7.0 in the last minute, 6.0 in the
last 5 minutes or 5.0 in the last 15 minutes (-w 7.0,6.0,5.0). It will output a critical if the load
value exceeded 12.0 in the last minute, 8.0 in the last 5 minutes or 6.0 in the last 15 minutes
(-c 12.0,8.0,6.0).

check_load -w 7.0,6.0,5.0 -c 12.0,8.0,6.0

1.5.2.6 Disk Health: Checking the Health of Local Hard Disks

This check is only relevant on physical systems with local storage attached to it. It will check the
disk status utilizing the S.M.A.R.T interface and it will output a critical if any of the S.M.A.R.T
values exceeds critical limits. check_smartmon is not a standard Nagios plugin and can be down-
loaded at https://exchange.nagios.org/ .

check_smartmon --drive /dev/sda --drive /dev/sdb

18 Common Checks

https://exchange.nagios.org/

1.5.3 Other Checks

1.5.3.1 MySQL: Checking That the MySQL Database Is Responding

This check will check that the MySQL database server is running and that the database api_pro-
duction is available.

check_mysql -H localhost -u nagios -p xxxxxx -d api_production

MySQL Databases to check:

1. api_production

2. mysql

1.5.3.2 Backup Status: Checking That a Valid Backup Is Available

It is always advisable to check that the last backup run was successful and a recent backup is
available. The check itself depends on the Backup solution that is used.

19 Other Checks

2 File System Overview

2.1 Configuration Files

2.1.1 Front-end Configuration

The front-end is configured with 4 les:

/srv/www/obs/api/config/database.yml

/srv/www/obs/api/config/options.yml

/srv/www/obs/api/config/feature.yml

/etc/apache2/vhosts.d/obs.conf

2.1.1.1 database.yml

This le has the information needed to access the database. It contain credentials for the database
access and should be only readable by root and the group running the Web server (www).

The le has settings for the production, development and test ruby environment, for production
systems only the production section is important.

Example production section

production:
 adapter: mysql2
 database: api_production
 username: obsapiuser
 password: topsecret
 encoding: utf8
 timeout: 15
 pool: 30

TABLE 2.1: DATABASE CONFIGURATION KEYWORDS

keyword Description Remarks

adapter Database driver only MySQL databases are supported

20 Configuration Files

keyword Description Remarks

database Database name do not change !

username MySQL user name database user, not a system user

password password for this user clear text

encoding codetable

timeout wait time in milliseconds

pool number of open connections
per thread

socket path to the MySQL socket same host only

host IP address or hostname of the
MySQL server

for remote servers

port port number of the MySQL
server

for remote servers

2.1.1.2 options.yml

The configuration le /srv/www/obs/api/config/options.yml is the default configuration le
for the Open Build Service Web UI and API. It contains configuration parameters for example
for back-end connections and connection to the API. Important are the configurations for source
and front-end hosts. The configuration for LDAP authentication is also located in this le.

Configuration options can be set per Rails environment (https://guides.rubyonrails.org/configur-

ing.html#rails-environment-settings) or as generic configuration option defined in default.

Note
We've updated the format of the options.yml after the release of OBS 2.9. Old configuration
les can be converted via

(cd /srv/www/obs/api/; rake migrate_options_yml)

21 Front-end Configuration

https://guides.rubyonrails.org/configuring.html#rails-environment-settings
https://guides.rubyonrails.org/configuring.html#rails-environment-settings

Note
More and more configurations will be moved to the database and do not longer exist in
this le. The database configuration can be accessed via the API /configuration path.

TABLE 2.2: options.yml CONFIGURATION ITEMS

Config item Description Values default Remarks

use_xforward Use mod_xforward
module

true false Apache only, should
be true

use_nginx_redirect Use X-Accel-Redirect /inter-

nal_redirect

Nginx only

min_votes_for_rating Minimum votes for a
rating

integer 3

response_schema_valida-
tion

Set to true to verify
XML responses com-
ply to the schema

true false test/debug option

source_host back-end source serv-
er host

localhost

source_port back-end source serv-
er port

integer 5352

source_protocol back-end source serv-
er protocol

http , https

front end_host Front-end host localhost

frontend_port Front-end port integer 443

frontend_protocol Front-end protocol http https

22 Front-end Configuration

Config item Description Values default Remarks

external_frontend_host External Front-end
host

if your users access
the hosts through a
proxy or different
name

external_frontend_port External Front-end
port

integer 443

external_frontend_proto-
col

External Front-end
protocol

http https

extended_backend_log Extended back-end
log

true false test/debug option

proxy_auth_mode: turn proxy mode on/
o

:off :on see LDAP section

proxy_auth_test_user Test user coolguy test/debug option

proxy_auth_test_email Email of Test user coolguy@ exam-

ple.com

test/debug option

global_write_through if set to false, the API
will only fake writes
to back-end

true false test/debug option

auto_cleanup_after_days not longer used 30 moved to /configura-
tion API

errbit_api_key API key of the appli-
cation

test/debug option

errbit_host installation of er-
rbit.com a Ruby error
catcher

test/debug option

23 Front-end Configuration

Config item Description Values default Remarks

errbit_api_key API key of the appli-
cation

test/debug option

ldap_mode: OBS LDAP mode on/
o

:off :on see LDAP section

Example options.yml

#
This file contains the default configuration of the Open Build Service
API.
#

default: &default
 # Make use of mod_xforward module in apache
 use_xforward: true

 # Make use of X-Accel-Redirect for Nginx.
 # http://kovyrin.net/2010/07/24/nginx-fu-x-accel-redirect-remote
 #use_nginx_redirect: /internal_redirect

 # Minimum count of rating votes a project/package needs to # be taken in
 # account
 # for global statistics:
 min_votes_for_rating: 3

 # Set to true to verify XML reponses comply to the schema
 response_schema_validation: false

 # backend source server
 source_host: localhost
 source_port: 5352
 #source_protocol: https

 # api access to this instance
 frontend_host: localhost
 frontend_port: 443
 frontend_protocol: https
 # if your users access the hosts through a proxy (or just a different name,
 # use this to
 # overwrite the settings for users)
 #external_frontend_host: api.opensuse.org
 #external_frontend_port: 443
 #external_frontend_protocol: https

24 Front-end Configuration

 extended_backend_log: true

 # proxy_auth_mode can be :off, :on or :simulate
 proxy_auth_mode: :off

 # ATTENTION: If proxy_auth_mode'is :on, the frontend takes the user
 # name that is coming as headervalue X-username as a
 # valid user does no further authentication. So take care...
 proxy_auth_test_user: coolguy
 proxy_auth_test_email: coolguy@example.com

 # set this to enable auto cleanup requests after the given days
 auto_cleanup_after_days: 30

 #schema_location

 #version

 # if set to false, the API will only fake writes to backend (useful in
 # testing)
 # global_write_through: true

 # see
 # http://colszowka.heroku.com/2011/02/22/setting-up-your-custom-hoptoad-notifier-
endpoint-for-free-using-errbit-on-heroku
 #errbit_api_key: api_key_of_your_app
 #errbit_host: installation.of.errbit.com

production:
 <<: *default

test:
 <<: *default
 source_host: backend
 memcached_host: cache

development:
 <<: *default
 source_host: backend
 memcached_host: cache

25 Front-end Configuration

2.1.1.3 feature.yml

The configuration le /srv/www/obs/api/config/feature.yml contains the default configuration
about features that can be enabled or disabled in Open Build Service.

TABLE 2.3: feature.yml CONFIGURATION ITEMS

Config item Description Values default Remarks

image_templates enable/disable image
template feature

true false see Reference Guide
for more information

kiwi_image_editor enable/disable Kiwi
Image Editor

true false

cloud_upload enable/disable Cloud
Upload setup

true false

Example feature.yml

production:
 features: &default
 image_templates: true
 kiwi_image_editor: false
 cloud_upload: false

development:
 features:
 <<: *default
 kiwi_image_editor: true
 cloud_upload: true

test:
 features:
 <<: *default
 kiwi_image_editor: true
 cloud_upload: true

2.1.1.4 Apache Virtual Host obs.conf

The Apache configuration depends on the Apache version and which extra options are used, so
use the documentation of the Apache version you are using.

26 Front-end Configuration

Here, as an example, the standard configuration used by the appliance: Apache vhost example

Listen 82
May needed on old distributions or after an update from them.
#Listen 443

Passenger defaults
PassengerSpawnMethod "smart"
PassengerMaxPoolSize 20
#RailsEnv "development"

allow long request urls and being part of headers
LimitRequestLine 20000
LimitRequestFieldsize 20000

Just the overview page
<VirtualHost *:80>
 # just give an overview about this OBS instance via static web page
 DocumentRoot "/srv/www/obs/overview"

 <Directory /srv/www/obs/overview>
 Options Indexes
 Require all granted
 </Directory>
</VirtualHost>

Build Results
<VirtualHost *:82>
 # The resulting repositories
 DocumentRoot "/srv/obs/repos"

 <Directory /srv/obs/repos>
 Options Indexes FollowSymLinks
 Require all granted
 </Directory>
</VirtualHost>

OBS WEB UI & API
<VirtualHost *:443>
 ServerName api

 # General setup for the virtual host
 DocumentRoot "/srv/www/obs/api/public"
 ErrorLog /srv/www/obs/api/log/apache_error.log
 TransferLog /srv/www/obs/api/log/apache_access.log

27 Front-end Configuration

 PassengerMinInstances 2
 PassengerPreStart https://api

 SSLEngine on

 # SSL protocols
 # Supporting TLS only is adequate nowadays
 SSLProtocol all -SSLv2 -SSLv3

 # SSL Cipher Suite:
 # List the ciphers that the client is permitted to negotiate.
 # We disable weak ciphers by default.
 # See the mod_ssl documentation or "openssl ciphers -v" for a
 # complete list.
 SSLCipherSuite ALL:!aNULL:!eNULL:!SSLv2:!LOW:!EXP:!MD5:@STRENGTH

 SSLCertificateFile /srv/obs/certs/server.crt
 SSLCertificateKeyFile /srv/obs/certs/server.key

 <Directory /srv/www/obs/api/public>
 AllowOverride all
 Options -MultiViews

 # This requires mod_xforward loaded in apache
 # Enable the usage via options.yml
 # This will decrease the load due to long running requests a lot (unloading
 from rails stack)
 XForward on

 Require all granted
 </Directory>

 SetEnvIf User-Agent ".*MSIE [1-5].*" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

 CustomLog /var/log/apache2/ssl_request_log ssl_combined

 # from http://guides.rubyonrails.org/asset_pipeline.html
 <LocationMatch "^/assets/.*$">
 Header unset ETag
 FileETag None
 # RFC says only cache for 1 year
 ExpiresActive On
 ExpiresDefault "access plus 1 year"

28 Front-end Configuration

 </LocationMatch>

 SetEnvIf User-Agent ".*MSIE [1-5].*" \
 nokeepalive ssl-unclean-shutdown \
 downgrade-1.0 force-response-1.0

 ## Older firefox versions needs this, otherwise it wont cache anything over SSL.
 Header append Cache-Control "public"

</VirtualHost>

2.1.2 Back-end Configuration

The Back-end is configured with 2 les:

/etc/sysconfig/obs-server - a shell script used for workers and the OBS start scripts

/usr/lib/obs/server/BSConfig.pm - a Perl script defining some global variables

2.1.2.1 /etc/sysconfig/obs-server

This script is used to set up the basic paths and the worker. the most important settings are the
OBS_SRC_SERVER and OBS_REPO_SERVERS and the OBS_WORKER_INSTANCES.

TABLE 2.4: obs-server VARIABLES

Variable Description Values default Remarks

OBS_BACKENDCODE_DIR Path to the back-
end scripts

/usr/lib/obs/serv-
er/

OBS_RUN_DIR communication di-
rectory base

/srv/obs/run

OBS_LOG_DIR logging directory /srv/obs/log

OBS_BASE_DIR base directory /srv/obs

OBS_API_AUTOSETUP Automatically set-
up API and Web UI

yes no appliance only,
will overwrite con-
fig les

29 Back-end Configuration

Variable Description Values default Remarks

OBS_SRC_SERVER source server host localhost:5352 only one

OBS_REPO_SERVERS repository server
host

localhost:5252 maybe a list

OBS_WORKER_INSTANCES number of build
instances

integer 0

OBS_WORKER_INSTANCE
_NAMES

names of the work-
ers

space-separated
list

OBS_WORKER_DIRECTORY worker base direc-
tory

OBS_WORKER_PORTBASE The base for port
numbers used by
worker

integer 0 0 OS assign num-
ber

OBS_WORKER_JOBS Number of parallel
compile jobs

integer 1

OBS_WORKER_TEST_MODE Run in test mode yes no

OBS_WORKER_HOST LA-
BELS

one or more labels
for the build host

may used by con-
straints

OBS_USE_SLP Register in SLP
server

yes no

OBS_CACHE_DIR cache directory for
downloaded pack-
ages

OBS_CACHE_SIZE package cache size in MB

OBS_WORKER_NICE _LEVEL nice level of run-
ning workers

18

30 Back-end Configuration

Variable Description Values default Remarks

OBS_VM_TYPE VM type auto Xen kvm
lxc zvm emula-
tor:$arch none

OBS_VM_KERNEL Set kernel used by
worker

none (/boot/vm-
linuz)

KVM option

OBS_VM_INITRD initrd used by
worker

none (/boot/vm-
linuz)

KVM option

OBS_VM_DISK_AUTOSETUP
_ROOT_FILESIZE

Autosetup disk size 4096 in MB

OBS_VM_DISK_AUTOSETUP
_SWAP_FILESIZE

Autosetup swap
size

1024 on MB

OBS_VM_DISK_AUTOSETUP
_FILESYSTEM

File System used
with autosetup

ext3

OBS_VM_DISK_AUTOSETUP
_MOUNT_OPTIONS

Special mount op-
tions

OBS_VM_USE_TMPFS Enable build in
memory

yes no requires much
memory

OBS_INSTANCE_MEMORY Memory allocated
for a VM

512

OBS_STORAGE_AUTOSETUP storage auto con-
figuration

yes no may destroy disk
content

OBS_SETUP_WORKER
_PARTITIONS

LVM via obsstor-
agesetup

take_all use_ob-
s_vg none

may destroy disk
content

OBS_WORKER_CACHE_SIZE LVM partition for
cache size

31 Back-end Configuration

Variable Description Values default Remarks

OBS_WORKER_ROOT_SIZE LVM partition for
root size

OBS_WORKER_SWAP_SIZE LVM partition for
swap size

OBS_WORKER_BINARIES
_PROXY

proxy service for
caching binaries

OBS_ROOT_SSHD_KEY_URL ssh pub key to al-
low root user login

for mass deploy-
ment

OBS_WORKER_SCRIPT_URL URL to the initial
script

For workers the settings could be declared in the /etc/buildhost.config le as well.

#
NOTE: all these options can be also declared in /etc/buildhost.config on each worker
 differently.
#

Path: Applications/OBS
Description: The OBS backend code directory
Type: string
Default: ""
Config: OBS
#
An empty dir will lead to the fall back directory, typically /usr/lib/obs/server/
#
OBS_BACKENDCODE_DIR=""

Path: Applications/OBS
Description: The base for OBS communication directory
Type: string
Default: ""
Config: OBS
#
An empty dir will lead to the fall back directory, typically /srv/obs/run
#
OBS_RUN_DIR="/srv/obs/run"

32 Back-end Configuration

Path: Applications/OBS
Description: The base for OBS logging directory
Type: string
Default: ""
Config: OBS
#
An empty dir will lead to the fall back directory, typically /srv/obs/log
#
OBS_LOG_DIR="/srv/obs/log"

Path: Applications/OBS
Description: The base directory for OBS
Type: string
Default: ""
Config: OBS
#
An empty dir will lead to the fall back directory, typically /srv/obs
#
OBS_BASE_DIR=""

Path: Applications/OBS
Description: Automatically set up API and Web UI for OBS server, be warned, this will
 replace config files!
Type: ("yes" | "no")
Default: "no"
Config: OBS
#
This is usually only enabled on the OBS Appliance
#
OBS_API_AUTOSETUP="yes"
#
NOTE: all these options can be also declared in /etc/buildhost.config on each worker
 differently.
#

Path: Applications/OBS
Description: define source server host to be used
Type: string
Default: ""
Config: OBS
#
An empty setting will point to localhost:5352 by default
#
OBS_SRC_SERVER=""

Path: Applications/OBS
Description: define repository server host to be used

33 Back-end Configuration

Type: string
Default: ""
Config: OBS
#
An empty setting will point to localhost:5252 by default
#
OBS_REPO_SERVERS=""

Path: Applications/OBS
Description: define number of build instances
Type: integer
Default: 0
Config: OBS
#
0 instances will automatically use the number of CPU's
#
OBS_WORKER_INSTANCES="0"

Path: Applications/OBS
Description: define names of build instances for z/VM
Type: string
Default: ""
Config: OBS
#
The names of the workers as defined in z/VM. These must have two minidisks
assigned, and have a secondary console configured to the local machine:
0150 is the root device
0250 is the swap device
#
#OBS_WORKER_INSTANCE_NAMES="LINUX075 LINUX076 LINUX077"
OBS_WORKER_INSTANCE_NAMES=""

Path: Applications/OBS
Description: The base directory, where sub directories for each worker will get
 created
Type: string
Default: ""
Config: OBS
#
#
OBS_WORKER_DIRECTORY=""

Path: Applications/OBS
Description: The base for port numbers used by worker instances
Type: integer
Default: "0"
Config: OBS

34 Back-end Configuration

#
0 means let the operating system assign a port number
#
OBS_WORKER_PORTBASE="0"

Path: Applications/OBS
Description: Number of parallel compile jobs per worker
Type: integer
Default: "1"
Config: OBS
#
this maps usually to "make -j1" during build
#
OBS_WORKER_JOBS="1"

Path: Applications/OBS
Description: Run in test mode (build results will be ignore, no job blocking)
Type: ("yes" | "")
Default: ""
Config: OBS
#
OBS_WORKER_TEST_MODE=""

Path: Applications/OBS
Description: define one or more labels for the build host.
Type: string
Default: ""
Config: OBS
#
A label can be used to build specific packages only on dedicated hosts.
For example for benchmarking.
#
OBS_WORKER_HOSTLABELS=""

Path: Applications/OBS
Description: Register in SLP server
Type: ("yes" | "no")
Default: "yes"
Config: OBS
#
#
OBS_USE_SLP="yes"

Path: Applications/OBS
Description: Use a common cache directory for downloaded packages
Type: string
Default: ""

35 Back-end Configuration

Config: OBS
#
Enable caching requires a given directory here. Be warned, content will be
removed there !
#
OBS_CACHE_DIR=""

Path: Applications/OBS
Description: Defines the package cache size
Type: size in MB
Default: ""
Config: OBS
#
Set the size to 50% of the maximum usable size of this partition
#
OBS_CACHE_SIZE=""

Path: Applications/OBS
Description: Defines the nice level of running workers
Type: integer
Default: 18
Config: OBS
#
Nicenesses range from -20 (most favorable scheduling) to 19 (least
favorable).
Default to 18 as some testsuites depend on being able to switch to
one priority below (19) _and_ having changed the numeric level
(so going from 19->19 makes them fail).
#
OBS_WORKER_NICE_LEVEL=18

Path: Applications/OBS
Description: Set used VM type by worker
Type: ("auto" | "xen" | "kvm" | "lxc" | "zvm" | "emulator:$arch" | "emulator:
$arch:$script" | "none")
Default: "auto"
Config: OBS
#
#
OBS_VM_TYPE="auto"

Path: Applications/OBS
Description: Set kernel used by worker (kvm)
Type: ("none" | "/boot/vmlinuz" | "/foo/bar/vmlinuz)
Default: "none"
Config: OBS
#

36 Back-end Configuration

For z/VM this is normally /boot/image
#
OBS_VM_KERNEL="none"

Path: Applications/OBS
Description: Set initrd used by worker (kvm)
Type: ("none" | "/boot/initrd" | "/foo/bar/initrd-foo)
Default: "none"
Config: OBS
#
for KVM, you have to create with (example for openSUSE 11.2):
#
export rootfstype="ext4"
mkinitrd -d /dev/null -m "ext4 binfmt_misc virtio_pci virtio_blk" -k
 vmlinuz-2.6.31.12-0.2-default -i initrd-2.6.31.12-0.2-default-obs_worker
#
a working initrd file which includes virtio and binfmt_misc for OBS in order to work
 fine
#
for z/VM, the build script will create a initrd at the given location if
it does not yet exist.
#
OBS_VM_INITRD="none"

Path: Applications/OBS
Description: Autosetup for XEN/KVM/TMPFS disk (root) - Filesize in MB
Type: integer
Default: "4096"
Config: OBS
#
#
OBS_VM_DISK_AUTOSETUP_ROOT_FILESIZE="4096"

Path: Applications/OBS
Description: Autosetup for XEN/KVM disk (swap) - Filesize in MB
Type: integer
Default: "1024"
Config: OBS
#
#
OBS_VM_DISK_AUTOSETUP_SWAP_FILESIZE="1024"

Path: Applications/OBS
Description: Filesystem to use for autosetup {none,ext4}=ext4, ext3=ext3
Type: string
Default: "ext3"
Config: OBS

37 Back-end Configuration

#
#
OBS_VM_DISK_AUTOSETUP_FILESYSTEM="ext3"

Path: Applications/OBS
Description: Filesystem mount options to use for autosetup
Type: string
Default: ""
Config: OBS
#
#
OBS_VM_DISK_AUTOSETUP_MOUNT_OPTIONS=""

Path: Applications/OBS
Description: Enable build in memory
Type: ("yes" | "")
Default: ""
Config: OBS
#
WARNING: this requires much memory!
#
OBS_VM_USE_TMPFS=""

Path: Applications/OBS
Description: Memory allocated for each VM (512) if not set
Type: integer
Default: ""
Config: OBS
#
#
OBS_INSTANCE_MEMORY=""

Path: Applications/OBS
Description: Enable storage auto configuration
Type: ("yes" | "")
Default: ""
Config: OBS
#
WARNING: this may destroy data on your hard disk !
This is usually only used on mass deployed worker instances
#
OBS_STORAGE_AUTOSETUP="yes"

Path: Applications/OBS
Description: Setup LVM via obsstoragesetup
Type: ("take_all" | "use_obs_vg" | "none")
Default: "use_obs_vg"

38 Back-end Configuration

Config: OBS
#
take_all: WARNING: all LVM partitions will be used and all data erased !
use_obs_vg: A lvm volume group named "OBS" will be re-setup for the workers.
#
OBS_SETUP_WORKER_PARTITIONS="use_obs_vg"

Path: Applications/OBS
Description: Size in MB when creating LVM partition for cache partition
Type: integer
Default: ""
Config: OBS
#
#
OBS_WORKER_CACHE_SIZE=""

Path: Applications/OBS
Description: Size in MB when creating LVM partition for each worker root partition
Type: integer
Default: ""
Config: OBS
#
#
OBS_WORKER_ROOT_SIZE=""

Path: Applications/OBS
Description: Size in MB when creating LVM partition for each worker swap partition
Type: integer
Default: ""
Config: OBS
#
#
OBS_WORKER_SWAP_SIZE=""

Path: Applications/OBS
Description: URL to a proxy service for caching binaries used by worker
Type: string
Default: ""
Config: OBS
#
#
OBS_WORKER_BINARIES_PROXY=""

Path: Applications/OBS
Description: URL to a ssh pub key to allow root user login
Type: string
Default: ""

39 Back-end Configuration

Config: OBS
#
This is usually used on mass (PXE) deployed workers)
#
OBS_ROOT_SSHD_KEY_URL=""

Path: Applications/OBS
Description: URL to a script to be downloaded and executed
Type: string
Default: ""
Config: OBS
#
This is a hook for doing special things in your setup at boot time
#
OBS_WORKER_SCRIPT_URL=""

2.1.2.2 BSConfig.pm

This le is a perl module used by most back-end scripts, it mainly defines global variables. Since
it is a perl module, after changes the back-end servers need to be restarted to become aware
of the changes.

Warning
If there is a Perl syntax error in this le, the services will not start. Most likely you forgot
the semicolon on the end of a statement.

TABLE 2.5: BSConfig.pm VARIABLES

Variable Description Values default Remarks

$hostname FQDN of the back-
end host

leave as it is

$ip IP address of the
back-end host

leave as it is

$frontend FQDN of the front-
end host

undef set only if the front-
end runs on another
host

40 Back-end Configuration

Variable Description Values default Remarks

$ipaccess Map of IP access
rules

Add all hosts if parti-
tion are used

$srcserver URL of the source
server

'http://$host-

name: 5352'

$reposerver URL of the repo serv-
er

'http://$host-

name: 5252'

partition specific

$serviceserver URL of the service
server

'http://$host-

name: 5152'

$workersrcserver URL of the source
server

optional for worker
access

$workerreposerver URL of the repo serv-
er

optional for worker
access

$clouduploadserver URL of the cloud up-
load server

'http://$host-

name: 5452'

$servicedir Path to the service
scripts

/usr/lib/obs/ser-

vice/

$servicetempdir Path to service temp
dir

/var/tmp/ optional

$serviceroot Prefix to servicedir optional

$service_maxchild Maximum number of
concurrent jobs for
source service

integer unlimited if not set

$gpg_standard_key Path to the standard
sign key

$hermesserver URL of the notifica-
tion server

optional

41 Back-end Configuration

Variable Description Values default Remarks

$hermesnamespace Namespace for the
notifications

optional

$notification _plugin notification plugins optional

@reposervers List of reposervers ("http://$host-

name: 5252")

$bsdir Path to the back-end
directory

/srv/obs

$bsuser OS user running the
back-end

obsrun

$bsgroup OS group running the
back-end

obsrun

$bsquotale Package quota for
projects

optional

$sched_asyncmode Use asynchronous
scheduler

Avoid issues with
remote projects on
slow networks

$sched_startupmode Cold start mode 0 1 2

$disable_data_sync fdatasync may cause data cor-
ruption

$rundir back-end communi-
cation

$bsdir/run

$logdir log directory $bsdir/log

$nosharedtrees Shared trees
0=shared 1=not
shared 2=not shared
with fallback

0 1 2 optional for non-ACL
systems, should be
set for access control

42 Back-end Configuration

Variable Description Values default Remarks

$packtrack enable binary release
tracking

[]

$limit_projects limit visibility of
projects for some ar-
chitectures

optional

$relsync_pool allow separation of
releasenumber sync-
ing per architecture

$stageserver stage server rsync URI

$stageserver_sync Extra stage sync serv-
er

rsync URI

$sign Path to sign script

$sign_project call sign with --
project <project>

0 1

$keyfile Global sign key

$localarch Local architecture for
product building

$buildlog_maxsize worker max buildlog
size

'500 * 1000000' in bytes

$buildlog_maxidle Time with no
changes in the build-
log will kill the job

'8 * 3600' in sec

$xenstore_maxsize xenstore size '20 * 1000000' current XEN has no
xenstore anymore

$gettimeout Max timeout for get '1 * 3600' in sec

43 Back-end Configuration

Variable Description Values default Remarks

$workerhostcheck check script for
worker

$powerhosts Worker with more re-
sources

obsolete use con-
straints

$powerpkgs packages which need
workers with more
resources

obsolete use con-
straints

$norootexceptions List of packages need
to build as root

$old_style_services Use old style source
service handling

0 1

$partition Current partition see Section 1.4, “Dis-

tributed Setup”

$partitioning Partition project
mapping

see Section 1.4, “Dis-

tributed Setup”

$partitionservers Partition server map-
ping

see Section 1.4, “Dis-

tributed Setup”

$dispatch_adjust Adjust dispatch prior-
ity

see Section 4.5.2,

“dispatch_adjust

Array”

$publishedhook_use
_regex

Use regular expres-
sions in publish hook
map

0 1 see Section 4.6, “Pub-

lisher Hooks”

$publishedhook Publish hook map see Section 4.6, “Pub-

lisher Hooks”

44 Back-end Configuration

Variable Description Values default Remarks

$unpublished-
hook_use _regex

Use regular expres-
sions in unpublish
hook map

0 1 see Section 4.7, “Un-

publisher Hooks”

$unpublishedhook Unpublish hook map see Section 4.7, “Un-

publisher Hooks”

Example BSConfig.pm

#
Copyright (c) 2006, 2007 Michael Schroeder, Novell Inc.
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License version 2 as
published by the Free Software Foundation.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program (see the file COPYING); if not, write to the
Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA
#
##
#
Open Build Service Configuration
#

package BSConfig;

use Net::Domain;
use Socket;

my $hostname = Net::Domain::hostfqdn() || 'localhost';
IP corresponding to hostname (only used for $ipaccess); fallback to localhost since
 inet_aton may fail to resolve at shutdown.
my $ip = quotemeta inet_ntoa(inet_aton($hostname) || inet_aton("localhost"));

my $frontend = undef; # FQDN of the Web UI/API server if it's not $hostname

45 Back-end Configuration

If defined, restrict access to the backend servers (bs_repserver, bs_srcserver,
 bs_service)
our $ipaccess = {
 '127\..*' => 'rw', # only the localhost can write to the backend
 "^$ip" => 'rw', # Permit IP of FQDN
 '.*' => 'worker', # build results can be delivered from any client in the network
};

IP of the Web UI/API Server (only used for $ipaccess)
if ($frontend) {
 my $frontendip = quotemeta inet_ntoa(inet_aton($frontend) || inet_aton("localhost"));
 $ipaccess->{$frontendip} = 'rw' ; # in dotted.quad format
}

Also change the SLP reg files in /etc/slp.reg.d/ when you touch hostname or port
our $srcserver = "http://$hostname:5352";
our $reposerver = "http://$hostname:5252";
our $serviceserver = "http://$hostname:5152";

you can use different ports for worker connections
#our $workersrcserver = "http://$hostname:5353";
#our $workerreposerver = "http://$hostname:5253";

our $servicedir = "/usr/lib/obs/service/";
#our $servicetempdir = "/var/temp/";
#our $serviceroot = "/opt/obs/MyServiceSystem";

Maximum number of concurrent jobs for source service
#our $service_maxchild = 20;

our $gpg_standard_key = "/srv/obs/obs-default-gpg.asc";
optional notification service:
#our $hermesserver = "http://$hostname/hermes";
#our $hermesnamespace = "OBS";
#
Notification Plugin, multiple plugins supported, separated by space
#our $notification_plugin = "notify_hermes notify_rabbitmq";
#

For the workers only, it is possible to define multiple repository servers here.
But only one source server is possible yet.
our @reposervers = ("http://$hostname:5252");

Package defaults
our $bsdir = '/srv/obs';
our $bsuser = 'obsrun';
our $bsgroup = 'obsrun';

46 Back-end Configuration

#our $bsquotafile = '/srv/obs/quota.xml';

Use asynchronus scheduler. This avoids hanging schedulers on remote projects,
when the network is slow or broken. This will become the default in future
our $sched_asyncmode = 1;

Define how the scheduler does a cold start. The default (0) is to request the
data for all packages, (1) means that only the non-remote packages are fetched,
(2) means that all of the package data fetches get delayed.
our $sched_startupmode = 0;

Disable fdatasync calls, increases the speed, but may lead to data
corruption on system crash when the filesystem does not guarantees
data write before rename.
It is esp. required on XFS filesystem.
It is safe to be disabled on ext4 and btrfs filesystems.
#our $disable_data_sync = 1;

Package rc script / backend communication + log files
our $rundir = "$bsdir/run";
our $logdir = "$bsdir/log";

optional for non-acl systems, should be set for access control
0: trees are shared between projects (built-in default)
1: trees are not shared (only usable for new installations)
2: new trees are not shared, in case of a missing tree the shared
location is also tried (package default)
our $nosharedtrees = 2;

enable binary release tracking by default for release projects
our $packtrack = [];

optional: limit visibility of projects for some architectures
#our $limit_projects = {
"ppc" => ["openSUSE:Factory", "FATE"],
"ppc64" => ["openSUSE:Factory", "FATE"],
#};

optional: allow seperation of releasnumber syncing per architecture
one counter pool for all ppc architectures, one for i586/x86_64,
arm archs are separated and one for the rest in this example
our $relsync_pool = {
 "local" => "local",
 "i586" => "i586",
 "x86_64" => "i586",
 "ppc" => "ppc",
 "ppc64" => "ppc",

47 Back-end Configuration

 "ppc64le" => "ppc",
 "mips" => "mips",
 "mips64" => "mips",
 "mipsel" => "mipsel",
 "mips64el" => "mipsel",
 "aarch64" => "arm",
 "aarch64_ilp32" => "arm",
 "armv4l" => "arm",
 "armv5l" => "arm",
 "armv6l" => "arm",
 "armv6hl" => "arm",
 "armv7l" => "arm",
 "armv7hl" => "arm",
 "armv5el" => "armv5el", # they do not exist
 "armv6el" => "armv6el",
 "armv7el" => "armv7el",
 "armv8el" => "armv8el",
 "sparcv9" => "sparcv9",
 "sparc64" => "sparcv9",
};

#No extra stage server sync
#our $stageserver = 'rsync://127.0.0.1/put-repos-main';
#our $stageserver_sync = 'rsync://127.0.0.1/trigger-repos-sync';

#No package signing server
our $sign = "/usr/bin/sign";
#Extend sign call with project name as argument "--project $NAME"
#our $sign_project = 1;
#Global sign key
our $keyfile = "/srv/obs/obs-default-gpg.asc";

Use a special local arch for product building
our $localarch = "x86_64";

config options for the bs_worker
#
#our buildlog_maxsize = 500 * 1000000;
#our buildlog_maxidle = 8 * 3600;
#our xenstore_maxsize = 20 * 1000000;
#our gettimeout = 1 * 3600;
#
run a script to check if the worker is good enough for the job
#our workerhostcheck = 'my_check_script';
#
Allow to build as root, exceptions per package
the keys are actually anchored regexes

48 Back-end Configuration

our $norootexceptions = { "my_project/my_package" => 1, "openSUSE:Factory.*/
installation-images" => 1 };

Use old style source service handling
our $old_style_services = 1;

###
Optional support to split the binary backend. This can be used on large servers
to separate projects for better scalability.
There is still just one source server, but there can be multiple servers which
run each repserver, schedulers, dispatcher, warden and publisher
#
This repo service is the 'home' server for all home:* projects. This and the
$reposerver setting must be different on the binary backend servers.
our $partition = 'home';
#
this defines how the projects are split. All home: projects are hosted
on an own server in this example. Order is important.
our $partitioning = ['home:' => 'home',
'.*' => 'main',
];
#
our $partitionservers = { 'home' => 'http://home-backend-server:5252',
'main' => 'http://main-backend-server:5252',
};

Publish hooks
our $publishedhook_use_regex = 1;
our $publishedhook = {
 "Product\/SLES12" => "/usr/local/bin/script2run_sles12",
 "Product\/SLES11.*" => "/usr/local/bin/script2run_sles11",
};

host specific configs
my $hostconfig = __FILE__;
$hostconfig =~ s/[^\/]*$/bsconfig.$hostname/;
if (-r $hostconfig) {
 print STDERR "reading $hostconfig...\n";
 require $hostconfig;
}

1;

49 Back-end Configuration

2.2 Log Files

2.2.1 Front-end

The front-end log les are found under /srv/www/obs/api/log.

The following front-end log les exist:

apache_access.log - apache requests

apache_error.log - errors from apache

backend_access.log - API → backend requests

clockworkd.clock.output → timer event log

delayed_job.log → delayed job log

production.log→ main ruby log

production.searchd.log - search daemon log

production.searchd.query.log - search request logs

2.2.2 Back-end

The back-end log les are found by default under /srv/obs/log/.

The following back-end log les exist:

dispatcher.log - dispatcher log

dodup.log - download on demand log (since 2.7)

publisher.log - publisher log

rep_server.log - repo server log

scheduler_<arch>.log - scheduler log for each architecture

signer.log - sign service log

src_server.log - source server log

50 Log Files

src_service.log - source service daemon log

warden.log - warden log

clouduploadserver.log - cloud upload server log

clouduploadworker.log - cloud upload worker log

The following log les for the upload jobs exist inside the /srv/obs/cloudupload directory (also
linked in /bs/cloudupload):

<job_id>.log - log les for undone upload jobs

done/<job_id>.log - log les for already finished upload jobs

2.3 /srv/obs Tree
The default back-end data directory is located under /srv/obs/. Here are a bunch of subdirec-
tories used for communication between the different server, to store data, status information
and logs. Here is one le configuration.xml in the top directory, which stores the global OBS
configuration for the back-end. You should not modify this le directly, but use the API /con-
figuration interface instead, since this information needs to kept in sync with the front-end.

2.3.1 build Directory

In this subdirectory managed by the repo server daemon, all repository data, metadata and build
results are stored in a hierarchical tree.

Example build directory tree of a binary imported distribution (OpenSUSE:13.2) and a small
test project with 3 packages:

├── openSUSE:13.2
│ └── standard
│ ├── i586
│ │ └── :full
│ └── x86_64
│ └── :full
├── Test1
│ └── os13.2
│ ├── i586
│ │ ├── :full
│ │ ├── :logfiles.fail

51 /srv/obs Tree

│ │ ├── :logfiles.success
│ │ ├── :meta
│ │ ├── :repo
│ │ ├── rsync
│ │ ├── srtp
│ │ └── wget
│ └── x86_64
│ ├── :full
│ ├── :logfiles.fail
│ ├── :logfiles.success
│ ├── :meta
│ ├── :repo
│ ├── rsync
│ ├── srtp
│ └── wget

2.3.2 cloudupload Directory

Info for cloud upload jobs is stored here, it has a subdir named done for storing the already
finished jobs.

2.3.3 db Directory

Back-end database root directory use by the source server, repo server scheduler and publisher.
Nobody should touch this.

2.3.4 diffcache Directory

Cache for source server compare operations.

2.3.5 events Directory

Communication between services.

2.3.6 info Directory

Scheduler information managed by the scheduler and used by the repo server.

52 cloudupload Directory

2.3.7 jobs Directory

The build jobs are stored in the /srv/obs/jobs directory. They are organized bybuild architecture:

jobs
├── armv7l
├── i586
├── load
└── x86_64
 └── Release:Stable::SLE-12_GA::CI-demo-36db80552b735e193dced13f058f866f

The jobs/load le contains statistical data about the build jobs.

2.3.8 log Directory

Contains the log les of the back-end daemons.

2.3.9 projects Directory

Contains the project hierarchy and metadata under revision control.

2.3.10 remotecache Directory

Cache for remote repository information.

2.3.11 repos Directory

Directory managed by the publisher to collect build results, also used by the repo server and
scheduler to nd build results.

2.3.12 repos_sync Directory

Directory with les pointing to the project root directories, helper for publisher rsync.

2.3.13 run Directory

State and lock information for the back-end daemons

53 jobs Directory

2.3.14 sources Directory

All package sources under revision control in one directory per package, managed by the source
server. Package sources are by default deduplicated across all projects, as long a source le has
the same MD5 sum, it is only stored once. A pseudo '_project' package exist in the directory
containing the project metadata revisions. ':service' and ':upload' are temporary directories used
by the source server.

Example sources directory structure:

sources/
├── CI-demo
[...]
├── srtp
├── test1
├── _project
├── :service
└── :upload

2.3.15 trees Directory

Revision control data for project and packages, managed by the source server.

2.3.16 upload Directory

Temporary directory for uploading les for other back-end components.

2.3.17 workers Directory

Worker information

54 sources Directory

2.4 Metadata

2.4.1 OBS Revision Control

This section gives a short generic overview how the revision information are stored in the OBS
back-end for packages and projects. The OBS back-end stores all les in a light weight content
based hierarchical tree. Each le is hashed (with MD5) and stored with the hash as part of
the filename under the /srv/obs/tree or /srv/obs/sources directories. The revision information is
stored in separate les by the Source Server in the /srv/obs/projects directory.

2.4.1.1 OBS revision control files

The revision information is stored in simple CSV like le format with a bar (|) as delimiter
between the 8 columns. The les do have the extension .rev for package/project revision data
and .mref for meta revision data. The hash then points to a <hash>-MD5SUMS le in the /srv/
obs/tree/ directories which have the le list with MD5 hashes of this revision. The hashes in this
le list are pointing to the source les in the /srv/obs/sources tree.

An example revision le:

1|1|56cdd3adb778089d1fcc49b92bb93e5b|0.9|1464005086|user4|initial version|
2|2|fe7aa1ade5c9d005de738c234c90bc90|0.9|1464005304|user4|fix spec file|
3|1|72c7986e694f45ab1a62779e64e92a8f|1.0|1464005339|user4|new version|
4|2|699e9931e6f167d78e65bbe5853f592f|1.0|1464006221|user4|add patch file|
5|1|0cfc3a2297f38d2aa9d8d0e98fc22a38|1.1|1464007797|user4|new version|

TABLE 2.6: THE 8 COLUMNS

Column Content XML tag may empty

1 revision number ref no

2
version revision
number

vref yes

3 hash srcmd5 no

4 version version yes

5 time stamp time no

55 Metadata

Column Content XML tag may empty

6 user user no

7 commit message comment yes

8 request id requestid yes

Depending on the target (package, project or metadata) used, elds can be empty or have special
values, for example, unknown for the version.

Example MD5SUMS le

/srv/obs # cat trees/Test1/package1/56cdd3adb778089d1fcc49b92bb93e5b-MD5SUMS
0a17daaa913df9e50ee65e83a1898363 package1.spec
1f810b3521242a98333b7bbf6b2b7ef7 test1.sh

2.4.1.2 OBS Revision API

The revision info can be retrieved via API calls for the specific package, for example, using /
source/<project>/<package>/_history .

Specific revisions of les can be retrieved with the optional "rev=N" parameter, for example, /
source/<project>/<package>/<le>?rev=N.

On PUT and POST methods for les the optional "comment=some+comment" can be used to
set a commit message.

2.4.2 Project Metadata

Project metadata are XML les containing the meta project information, such as title, descrip-
tion, related user and groups with roles, build settings, repository settings, publish settings, de-
bug settings and more.

TABLE 2.7: PROJECT META XML

XML tag Attributes Content

project name project name

title Short description

56 Project Metadata

XML tag Attributes Content

description Developer information

person userid login name

person role role (maintainer, bugowner, …)

group groupid group name

group role role (maintainer, bugowner, …)

devel An optional devel project

build optional build ags

publish optional publish ags

useforbuild optional useforbuild ags

debuginfo optional debuginfo ags

binarydownload optional binarydownload ags

repository name name of the repository for build results

repository path project name of the source project for remaining
build requires

repository path repository name of repository in the source project

repository arch architecture name

remoteurl path to a remote OBS API for interconnect

Example project metadata:

<project name="Test11">
 <title>Test project 11</title>
 <description>Project for demo</description>
 <person userid="Admin" role="maintainer"/>
 <person userid="user0" role="maintainer"/>
 <group groupid="obsprj3" role="maintainer"/>

57 Project Metadata

 <repository name="openSUSE_13.2">
 <path project="openSUSE.org:openSUSE:13.2" repository="standard"/>
 <arch>x86_64</arch>
 </repository>
</project>

2.4.3 Package Metadata

XML le about package meta information, like Title, description, related user and groups with
roles, build settings, publish settings, debug settings and more. Most XML tags are the same as
for projects.

Example package metadata:

<package name="test1" project="Test11">
 <title>A test package for learning</title>
 <description>An example test package for learning.
</description>
 <person userid="user5" role="bugowner"/>
 <person userid="user5" role="maintainer"/>
 <build>
 <enable repository="openSUSE_13.2"/>
 </build>
 <publish>
 <disable repository="openSUSE_13.2"/>
 </publish>
 <debuginfo>
 <disable/>
 </debuginfo>
</package>

2.4.4 Attribute Metadata

Attributes can be used to add special information to packages. Attributes can be used to trigger
special actions.

Example attribute data:

<attributes>
 <attribute name="Issues" namespace="OBS"/>
 <attribute name="AutoCleanup" namespace="OBS">
 <value>2016-06-30 00:00:00</value>
 </attribute>

58 Package Metadata

 <attribute name="AutoCleanup" namespace="OBS">
 <value></value>
 </attribute>
</attributes>

2.4.5 Job Files

Jobs are stored by the scheduler in the /srv/obs/jobs directory and contain the build setup
information for the package, for example, a reference to the exact source version, build depen-
dencies, build repository information, timestamps.

Sample job le:

<buildinfo project="Release:Stable" repository="SLE-12_GA" package="CI-demo"
srcserver="http://obs.b1-systems.de:5352"
reposerver="http://obs.b1-systems.de:5252">
 <job>Release:Stable::SLE-12_GA::
 CI-demo-36db80552b735e193dced13f058f866f</job>
 <arch>x86_64</arch>
 <srcmd5>36db80552b735e193dced13f058f866f</srcmd5>
 <verifymd5>36db80552b735e193dced13f058f866f</verifymd5>
 <rev>2</rev>
 <disturl>obs://b1-systems.de/Release:Stable/SLE-12_GA/
 36db80552b735e193dced13f058f866f-CI-demo</disturl>
 <reason>new build</reason>
 <needed>0</needed>
 <revtime>1461077600</revtime>
 <readytime>1461077708</readytime>
 <file>CI-demo.spec</file>
 <versrel>0.1.9-2</versrel>
 <bcnt>1</bcnt>
 <release>2.1</release>
 <debuginfo>1</debuginfo>
 <prjconfconstraint>linux:version:min 3.0.0</prjconfconstraint>
 <bdep name="aaa_base" preinstall="1" runscripts="1" notmeta="1" />
 <bdep name="attr" preinstall="1" notmeta="1" />
 <bdep name="bash" preinstall="1" notmeta="1" />
 <bdep name="coreutils" preinstall="1" notmeta="1" />
 <bdep name="diffutils" preinstall="1" notmeta="1" />
 <bdep name="filesystem" preinstall="1" notmeta="1" />
 <bdep name="fillup" preinstall="1" notmeta="1" />
 <bdep name="glibc" preinstall="1" notmeta="1" />
 <bdep name="grep" preinstall="1" notmeta="1" />
 <bdep name="libbz2-1" preinstall="1" notmeta="1" />
 <bdep name="libgcc_s1" preinstall="1" notmeta="1" />

59 Job Files

 <bdep name="m4" preinstall="1" notmeta="1" />
[...]
 <path project="Release:Stable" repository="SLE-12_GA"
 server="http://obs.b1-systems.de:5252" />
 <path project="SUSE:SLE-12:GA" repository="standard"
 server="http://obs.b1-systems.de:5252" />
</buildinfo>

60 Job Files

3 Security Concepts

3.1 General Paradigm
The general paradigm of Open Build Service is to host all content on its own. Every part required
to rebuild a package is hosted in Open Build Service to guarantee reproducibility. This includes
the ability to rebuild the build environment. However, optional services to integrate remote
resources exist as well. These resources are either mirrored and stored in revision control system
or just cached.

3.1.1 Frontend

The API and web interface frontends is the only part which must be accessible from public
network. A SSL/TLS certificate is highly recommended.

3.1.1.1 Access to Mirror Servers

The following services require access to stage servers. These servers can be used to publish
content without the need to make Open Build Service server parts public available.

The publisher is used to publish any build results to the stage servers. It needs access for
rsync service to the servers.

The source publisher can be used similar to publish sources belonging to published build
results (optional service).

3.1.1.2 Access to the Public Network

The following services may require access to the public network.

The srcserver when using the interconnect functionality to use content from remote Open
Build Service instances.

obsdodup when using external repositories (optional service). The obssrcserver would need
access then as well for downloading content.

61 General Paradigm

obssourceservice when supporting automatic source procession (optional service) from
remote. This service may be used to download content (for example, Git repositories) as
part of the sources.

obsclouduploadworker when publishing to public cloud instances is wanted.

3.1.1.3 Worker network

It is recommended to run the Open Build Service workers in an isolated network. This is an
additional security mechanism in case of a security breach on a worker. This network needs
access to the source and repository servers of the Open Build Service backend, but nowhere else.

3.1.1.4 Signer network

It is recommended to run the signd on an isolated host. The signer services need to stay on the
Open Build Service backend servers, they are just used for scheduling sign jobs. The signd is the
critical instance which hosts the single instance signature key. All further keys which belong to
any project are created by the signd, crypted with the instance key and delivered to the backend
servers. That way the signd instance is stateless after initial setup and it is enough to backup
the backend servers. Any sign job sends the encrypted private key to the signd server which is
decrypting it for signing the content. Access to the signd server must be limited to Open Build
Service backend server components (source server and publisher).

3.1.2 Build Environment

The build environment is created by obsworker instances via the build script. Inside the build
instances unverified and potentially harmful code is executed. Given that a user can run also any
provided kernel the isolation must happen on VM layer. The only supported VM types, which
are considered as secure are KVM and XEN VMs. The VMs prohibit any network access from the
running instances. The build script is always creating a new le system, copies in all required
data and executes the VM.

The build results get extracted directly from the block device. This is done to avoid mounting
it which could be used to breach the host kernel in the le system code by crafting the used
filesystem during build.

62 Build Environment

Every build also stores the used binaries inside of the _buildenv le. This can be used to re-
create the build environment later, even when newer updates got released meanwhile. This
requires however a maintenance setup to avoid that former releases get removed.

The build tools (like rpmbuild) are running usually as non-root user, but this is not a security
instrument. It is only a quality mechanic to ensure that source packages are rebuildable without
root permissions.

3.1.3 Source Revision System

The source revision storage system is part of Open Build Service. The identification of sources
still happens using MD5 sums for historic reasons. MD5 is considered to be still good enough for
identifying a source, but it is known to be attackable. Recent versions of the osc command line
tooling is sending therefore also a SHA256 sum in addition which is used to detect collisions
by the source server.

Sources can reference other package sources via _link les. These can be pinned to a revision
or to always using the latest one. That way underlying changes get merged automatically. This is
useful for shared development and automated builds, but it should be avoided for base projects.

3.1.4 Permission Handling

Authorization for write operations is done via the maintainer role on package or project level.
On project level the projects are organized in namespaces which are defined via colons inside
the project name. A maintainer role on a higher namespace grants the permission to claim
maintainer role on any deeper project. Official projects should therefore be organized under
their own top level namespaces (for example, openSUSE: namespace in our reference instance).

3.1.5 Signature Handling

Signatures are used to proof the origin of a shipment independent of Open Build Service instance.
Once the signd daemon has been enabled by the administrator, any binary result like RPM
packages, images, containers, or meta data gets signed. All Open Build Service instances have
a master key to sign results. This master key has two purposes: First, it is used for signing if a
dedicated signing key can not be found. Second, it is used to encrypt dedicated project signing

63 Source Revision System

keys so that they can be stored inside of the projects instead of on the signing server. If a project
does not have a signing key, the build server will search the parent projects. This follows the
logic of the write permission handling.

An Open Build Service user (including the Open Build Service admin user) has only limited
options to deal with the key setup. The user can create, delete, or extend the expire time of a
key. It is not possible to import an external key. This guarantees that no key can be used outside
of the Open Build Service instance to sign Open Build Service content.

A SSL certificate is derived from the keys when needed (for example, for secure boot).

GPG keypairs are created by the signd daemon. Therefore, it is recommend to run this daemon
on a separated and protected host. The master keypair should exist only on this signd host. Any
further created keypair is not stored on the signd instance, instead the private part is encrypt-
ed with the master key and transferred to the Open Build Service backend. Thus, the signd
instance is stateless and needs no recurring backups after initial setup. All keypairs (public and
private parts) are therefore part of the backup of the Open Build Service backend servers. The
sign executable transfers just the hash to be signed (not the entire le content) together with
the encrypted private key to signd . The daemon decrypts the private key with the master key,
creates the signature, and sends it back to the client. The returned signature is applied to the
binary by the sign executable afterwards.

A compromised backend would still result in a serious security incident since any content can
be signed with any project key. The private keys are not compromised themselves though.

3.2 Trust Zones

Open Build Service (OBS) components deal with different trust zones. These are separated via
network or virtualization mechanics.

3.2.1 Public Zones

Public zones are areas where any code under user control is running.

64 Trust Zones

3.2.1.1 External Network

This can be the public Internet if the Open Build Service instance is a public instance. Requests
can only be triggered via http, secured by SSL to the API instance here. Every developer is using
this interface to submit changes. However, further components may open connections to the
Internet as described below.

3.2.1.2 Untrusted Code

All code which is used to build content is considered to be untrusted code. This includes even the
Linux kernel, since users can build and run their own kernels. The security layer here is usually
either KVM and XEN virtualization. The instances are running without any network enabled.
Build results get copied by reading a simple blocklist directly from the device. A security issue
in the le system code can therefore not be used to compromise the worker.

3.2.2 Demilitarized Zone (DMZ)

The Demilitarized Zone contains services which interact with the public zone directly.

3.2.2.1 Open Build Service Frontend

The frontend service is the only service which provides an open port. It implements the autho-
rization of user requests. The authentication may happen in an external service like a proxy or
ldap server. The frontend reads and writes changes to the database and the source server only.

3.2.2.2 Open Build Service Frontend Background Services

Open Build Service frontend background services handle less time critical operations. This in-
cludes services which read data from external services like bug trackers, sending notifications
or long running jobs.

3.2.2.3 Stage Server

The stage server is providing the public content of the Open Build Service backends. The server
can be publicly accessible or just an upload server to a mirror infrastructure.

65 Demilitarized Zone (DMZ)

3.2.2.4 Cloud Uploader

The cloud uploader is uploading build results on user request. It reads from the binary servers
and sends the content via cloud specific plugins to external instances. This is an optional service.

3.2.2.5 Source Service Server

The source service server is acting based on uploaded sources. The services should be written
with security in mind and the administrator can decide which services are trustworthy. Official
releases of Open Build Service define a minimum set of especially trusted services which received
a security review. A container can be used for additional security for each service run.

3.2.3 Internal Zone

The internal zone is running service which are supposed to work without further external de-
pendency.

3.2.3.1 Open Build Service Source Server

The source server coordinates changes to package and project configuration. In addition to that
all events between the binary backends and notifications to the frontend get synchronized. Any
source change is tracked and stored in the revision history. There can only be a single source
server per OBS install.

3.2.3.2 Open Build Service Binary Servers

Binary Servers are hosting all content of build results. They also prepare public repositories and
deliver them to the staging server.

3.2.3.3 External Dependencies

The internal zone has no external dependency. However, the administrator may decide to run
the Open Build Service instance depending on external OBS instances or on external reposito-
ries. In that case the internal zone is downloading content from the resources specified by the
administrator.

66 Internal Zone

3.2.4 Worker Zone

The Open Build Service workers are running in an own isolated network. They access only source
and binary servers from internal zone.

3.2.5 Signing Server

The signing server is supposed to be the most isolated service. It is supposed to be stateless after
initial setup. Avoid to enable any remote access.

67 Worker Zone

Internal

Worker Network

Public
Network

Firewall/Proxy

Frontend
Web & API

Source
Server

Binary Backend
1

Source
Services

Cloud
Upload

Worker

Build VM
Build VM

Binary Backend
2

Worker

Build VM
Build VM

Worker

Build VM
Build VM

Sign
Daemon

Stage
Server

container

FIGURE 3.1: TRUST ZONES OF OPEN BUILD SERVICE

68 Signing Server

4 Administration

4.1 Tools

4.1.1 obs_admin

obs_admin is a command-line tool used on the back-end server(s) to manage running services,
submit maintenance tasks, and debug problems. It should be only used by experienced admins.

It has built-in help which you can display with obs_admin --help.

Options to control the running services:

Job Controlling
===============

 --shutdown-scheduler <architecture>
 Stops the scheduler nicely with dumping out its current state
 for fast startup.

 --check-project <project> <architecture>
 --check-project <project> <repository> <architecture>
 --check-all-projects <architecture>
 Check status of a project and its repositories again

 --deep-check-project <project> <architecture>
 --deep-check-project <project> <repository> <architecture>
 Check status of a project and its repositories again
 This deep check also includes the sources, in case of lost events.

 --check-package <project> <package> <architecture>
 Check status of a package in all repositories

 --publish-repository <project> <repository>
 Creates an event for the publisher. The scheduler is NOT scanning for new packages.
 The publisher may skip the event, if nothing has changed.
 Use --republish-repository when you want to enforce a publish.

 --unpublish-repository <project> <repository>
 Removes the prepared :repo collection and let the publisher remove the result. This
 is also updating the search database.
 WARNING: this works also for locked projects!

69 Tools

 --prefer-publish-event <name>
 prefers a publish event to be next. <name> is the file name inside of the publish
 event directory.

 --republish-repository <project> <repository>
 enforce to publish a repository

 --rebuild-full-tree <project> <repository> <arch>
 rebuild the content of :full/ directory

 --clone-repository <source project> <source repository> <destination repository>
 --clone-repository <source project> <source repository> <destination project>
 <destination repository>
 Clone an existing repo into another existing repository.
 Usefull for creating snapshots.

 --rescan-repository <project> <repository> <architecture>
 Asks the scheduler to scan a repository for new packages and add
 them to the cache file.

 --force-check-project <project> <repository> <architecture>
 Enforces the check of an repository, even when it is currently blocked due to amount
 of
 calculating time.

 --create-patchinfo-from-updateinfo
 creates a patchinfo submission based on an updateinfo information.

Options for maintenance are:

Maintenance Tasks
=================

Note: the --update-*-db calls are usually only needed when corrupt data has been created,
 for
 example after a file system corruption.

 --update-source-db [<project>]
 Update the index for all source files.

 --update-request-db
 Updates the index for all requests.

 --remove-old-sources <days> <y> (--debug)
 WARNING: this is an experimental feature atm. It may trash your data, but you have
 anyway
 a backup, right?
 remove sources older than <x> days, but keep <y> number of revisions

70 obs_admin

 --debug for debug output

Options for debugging:

Debug Options
=============

 --dump-cache <project> <repository> <architecture>
 Dumps out the content of a binary cache file.
 This shows all the content of a repository, including all provides
 and requires.

 --dump-state <architecture>

 --dump-project-from-state <project> <arch>
 dump the state of a project.

 --dump-relsync <file>
 To dump content of :relsync files.

 --set-relsync <file> <key> <value>
 Modify key content in a a :relsync file.

 --check-meta-xml <project>
 --check-meta-xml <project> <package>
 Is parsing a project or package xml file and puts out error messages, in case of
 errors.

 --check-product-xml <file>
 Is parsing a product xml file and puts out error messages, in case of errors.
 It does expand all xi:include references and validates the result.

 --check-product-group-xml <file>
 Is parsing a group xml file from a product definition and puts out error messages, in
 case of errors.

 --check-kiwi-xml <file>
 --check-kiwi-xml <project> <package>
 Is parsing a KIWI xml file and puts out error messages, in case of errors.

 --check-constraints <file>
 --check-constraints <project> <package>
 Validates a _constraints file

 --check-pattern-xml <file>
 Is parsing a pattern xml file and puts out error messages, in case of errors.

 --check-request-xml <file>

71 obs_admin

 Is parsing a request xml file and puts out error messages, in case of errors.

 --parse-build-desc <file> [<arch> [<buildconfigfile>]]
 Parse a spec, dsc or KIWI file with the Build script parser.

 --show-scheduler-architectures
 Show all architectures which are configured in configuration.xml to be supported by
 this instance.

 --show-delta-file <file>
 Show all instructions of a OBS delta file

 --show-delta-store <file>
 Show delta store statistics

4.1.2 osc

The osc command-line client is mainly used by developers and packagers. But for some tasks,
admin people also need this tool. It too has builtin help: use osc --help. The tool needs to be
configured rst to know the OBS API URL and your user details.

To configure the osc tool the rst time you need to call it with

osc -A <URL to the OBS API>
For example:
osc -A https://api.testobs.org

Follow the instructions on the terminal.

Warning
The password is stored in clear text in the .oscrc le by default, so you need to give
this le restrictive access rights, only read/write access for your user should be allowed.
osc allows to store the password in other ways (in keyrings for example) and may use
different methods for authentication like Kerberos see Section 4.8.7.2, “Kerberos”

For the admins the most important osc subcommands are:

meta - to create or update projects or package data

API - to read and write online configuration data

72 osc

4.1.2.1 osc meta Subcommand

meta: Show meta information, or edit it

Show or edit build service metadata of type <prj|pkg|prjconf|user|pattern>.

This command displays metadata on buildservice objects like projects,
packages, or users. The type of metadata is specified by the word after
"meta", like e.g. "meta prj".

prj denotes metadata of a buildservice project.
prjconf denotes the (build) configuration of a project.
pkg denotes metadata of a buildservice package.
user denotes the metadata of a user.
pattern denotes installation patterns defined for a project.

To list patterns, use 'osc meta pattern PRJ'. An additional argument
will be the pattern file to view or edit.

With the --edit switch, the metadata can be edited. Per default, osc
opens the program specified by the environmental variable EDITOR with a
temporary file. Alternatively, content to be saved can be supplied via
the --file switch. If the argument is '-', input is taken from stdin:
osc meta prjconf home:user | sed ... | osc meta prjconf home:user -F -

For meta prj and prjconf updates optional commit messages can be applied
with --message.

When trying to edit a non-existing resource, it is created implicitly.

Examples:
 osc meta prj PRJ
 osc meta pkg PRJ PKG
 osc meta pkg PRJ PKG -e

Usage:
 osc meta <prj|prjconf> [-r|--revision REV] ARGS...
 osc meta <prj|pkg|prjconf|user|pattern> ARGS...
 osc meta <prj|pkg|prjconf|user|pattern> [-m|--message TEXT] -e|--edit
 ARGS...
 osc meta <prj|pkg|prjconf|user|pattern> [-m|--message TEXT] -F|--file
 ARGS...
 osc meta pattern --delete PRJ PATTERN
 osc meta attribute PRJ [PKG [SUBPACKAGE]] [--attribute ATTRIBUTE]
 [--create|--delete|--set [value_list]]
Options:

73 osc

 -h, --help show this help message and exit
 --delete delete a pattern or attribute
 -s ATTRIBUTE_VALUES, --set=ATTRIBUTE_VALUES
 set attribute values
 -R, --remove-linking-repositories
 Try to remove also all repositories building against
 remove ones.
 -c, --create create attribute without values
 -e, --edit edit metadata
 -m TEXT, --message=TEXT
 specify log message TEXT. For prj and prjconf meta
 only
 -r REV, --revision=REV
 checkout given revision instead of head revision.
 For
 prj and prjconf meta only
 -F FILE, --file=FILE
 read metadata from FILE, instead of opening an
 editor.
 '-' denotes standard input.
 -f, --force force the save operation, allows one to ignores some
 errors like depending repositories. For prj meta
 only.
 --attribute-project
 include project values, if missing in packages
 --attribute-defaults
 include defined attribute defaults
 -a ATTRIBUTE, --attribute=ATTRIBUTE
 affect only a given attribute

4.1.2.2 osc api Subcommand

api: Issue an arbitrary request to the API

Useful for testing.

URL can be specified either partially (only the path component), or fully
with URL scheme and hostname ('http://...').

Note the global -A and -H options (see osc help).

Examples:
 osc api /source/home:user
 osc api -X PUT -T /etc/fstab source/home:user/test5/myfstab
 osc api -e /configuration

74 osc

Usage:
 osc api URL

Options:
 -h, --help show this help message and exit
 -a NAME STRING, --add-header=NAME STRING
 add the specified header to the request
 -T FILE, -f FILE, --file=FILE
 specify filename to upload, uses PUT mode by default
 -d STRING, --data=STRING
 specify string data for e.g. POST
 -e, --edit GET, edit and PUT the location
 -X HTTP_METHOD, -m HTTP_METHOD, --method=HTTP_METHOD
 specify HTTP method to use (GET|PUT|DELETE|POST)

The online API documentation is available at https://api.opensuse.org/apidocs/

Some examples for admin stu:

Read the global configuration file
 osc api /configuration
Update the global configuration
 osc api /configuration -T /tmp/configuration.xml

Read the distributions list
 osc api /distributions
Udate the distributions list
 osc api /distributions -T /tmp/distributions.xml

retrieve statistics
 osc api /statistics/latest_added

4.2 Managing Build Targets

4.2.1 Interconnect

Using another Open Build Service as source for build targets is the easiest way to start. The
advantage is, that you save local resources and you do not need to build everything from scratch.
The disadvantage is that you depend on the remote instance, if it has a downtime your instance
cannot do any builds for these targets, if the remote admins decide to remove some targets you
cannot use them anymore.

75 Managing Build Targets

https://api.opensuse.org/apidocs/

The easiest way to interconnect with some of the public OBS instances is to use the Web UI. You
need to log in with an administrator account of your instance to do this. On the start page of an
administrator account you will nd a Configuration link. On the Configuration page you nd
an Interconnect tab on the top, use this and select the public side you want.

If you want to connect to a not listed instance, you can simple create a remote project using
the osc meta prj command. A remote project differs from a local project as it has a remoteurl
tag (see Section 2.4.2, “Project Metadata”).

Example:

<project name="openSUSE.org">
 <title>openSUSE.org Project Link</title>
 <description>
This project refers to projects hosted on the openSUSE Build Service
</description>
 <remoteurl>https://api.opensuse.org/public</remoteurl>
</project>

Sending this via osc to the server:

osc meta prj -m "add openSUSE.org remote" -F /tmp/openSUSE.org.prj

4.2.2 Importing Distributions

FIXME: describe how to do it using DoD

4.3 Source Services
Source Services are tools to validate, generate or modify sources in a trustable way. They are
designed as smallest possible tools and can be combined following the powerful idea of the
classic UNIX design.

Design goals of source services were:

server side generated les must be easy to identify and must not be modifiable by the
user. This way other users can trust them to be generated in the documented way without
modifications.

generated les must never create merge conflicts

generated les must be a separate commit to the user change

76 Importing Distributions

services must be runnable at any time without user commit

services must be runnable on server and client side in the same way

services must be designed in a safe way. A source checkout and service run must never
harm the system of a user.

services shall be designed in a way to avoid unnecessary commits. This means there shall
be no time-dependent changes. In case the package already contains the same le, the
newly generated le must be dropped.

local services can be added and used by everybody.

server side services must be installed by the admin of the OBS server.

services can be defined per package or project wide.

4.3.1 Using Services for Validation

Source Services may be used to validate sources. This can happen per package, which is useful
when the packager wants to validate that downloaded sources are really from the original main-
tainer. Or validation can happen for an entire project to apply general policies. These services
cannot get skipped in any package

Validation can happen by validating les (for example using the verify_file or source_val-
idator service. These services just fail in the error case which leads to the build state "broken".
Or validation can happen by redoing a certain action and store the result as new le as down-
load_files is doing. In this case the newly generated le will be used instead of the committed
one during build.

4.3.2 Different Modes When Using Services

Each service can be used in a special mode defining when it should run and how to use the
result. This can be done per package or globally for an entire project.

4.3.2.1 Default Mode

The default mode of a service is to always run after each commit on the server side and locally
before every local build.

77 Using Services for Validation

4.3.2.2 trylocal Mode

The trylocal mode is running the service locally when using current osc versions. The result gets
committed as standard les and not named with _service: prefix. Additionally the service runs
on the server by default, but usually the service should detect that the result is the same and
skip the generated les. If they differ (for example, because the Web UI or API was used), they
are generated and added on the server.

4.3.2.3 localonly Mode

The localonly mode is running the service locally when using current osc versions. The result gets
committed as standard les and not named with _service: prefix. The service is never running
on the server side. It is also not possible to trigger it manually.

4.3.2.4 serveronly Mode

The serviceonly mode is running the service on the server only. This can be useful, when the
service is not available or can not work on developer workstations.

4.3.2.5 buildtime Mode

The service is running inside of the build job, for local and server side builds. A side effect is
that the service package is becoming a build dependency and must be available. Every user can
provide and use a service this way in their projects. The generated sources are not part of the
source repository, but part of the generated source packages. Network access is not be available
when the workers are running in a secure mode.

4.3.2.6 disabled Mode

The disabled mode is neither running the service locally or on the server side. It can be used to
temporarily disable the service but keeping the definition as part of the service definition. Or
it can be used to define the way how to generate the sources and doing so by manually calling
osc service runall The result will get committed as standard les again.

78 Different Modes When Using Services

4.3.3 Storage of Source Service Definitions

The called services are always defined in a _service le. It is either part of the package sources
or used project-wide when stored inside the _project package.

The _service le contains a list of services which get called in this order. Each service may define
a list of parameters and a mode. The project wide services get called after the per package
defined services. The _service le is an xml le like this example:

<services>
 <service name="download_files" mode="trylocal" />
 <service name="verify_file">
 <param name="file">krabber-1.0.tar.gz</param>
 <param name="verifier">sha256</param>
 <param
 name="checksum">7f535a96a834b31ba2201a90c4d365990785dead92be02d4cf846713be938b78</param>
 </service>
</services>

This example downloads the les via download_files service via the given URLs from the spec le.
When using osc this le gets committed as part of the commit. Afterwards the krabber-1.0.tar.gz
le will always be compared with the sha256 checksum.

4.3.4 Dropping a Source Service Again

Sometimes it is useful to continue working on generated les manually. In this situation the
_service le needs to be dropped, but all generated les need to be committed as standard les.
The OBS provides the "mergeservice" command for this. It can also be used via osc by calling
osc service merge .

4.4 Source Publisher

The job of the source publish service is to publish all sources for directly before published
binaries. This will include the sources of repackaged binaries. For example, the sources of RPMs
which are used inside of product, appliance or container images. A prerequisite for this is that
OBS has enabled content tracking for the used projects.

79 Storage of Source Service Definitions

4.4.1 Configuring Source Publisher

The source publishing can be configured via the le /usr/lib/obs/server/BSConfig.pm, where it
can be enabled globally or just for some projects. It is possible to use regular expressions here.

Publishing can be enabled by defining the rsync module to push the content:

our $sourcepublish_sync = 'rsync://your_rsync_server/rsync_module';

By default every project get published, but it is possible to define a whitelist via:

our $sourcepublish_filter = ["openSUSE:.*", "SUSE:.*"];

4.4.2 Considerations

The source publishing service is publishing the sources as they are hosted in Open Build Service.
This means these are the unprocessed sources and the content is not identical to the content of
source RPMs for example. Instead these are the sources which are the base for source RPMs.

As a consequence hints like NoSource: tags in spec les are ignored. The only way to disable
publishing for the user is to disable access or sourceaccess via the ags.

The filesystem structure is $project/$package/$srcmd5/. A inside of binary builds can be used
to nd the right sources.

Open Build Service will care for de-duplication on the rsync server. This must get implemented
there.

4.5 Dispatch Priorities

The dispatcher takes a job from the scheduler and assign it to a free worker. It tries to share
the available build time fair between all the project repositories with pending jobs. To achieve
this the dispatcher calculates a load per project repository of the used build time (similar to the
system load in Unix operating systems). The dispatcher assigned jobs to build clients from the
repository with the lowest load (thereby increasing its load). It is possible to tweak this mecha-
nism via dispatching priorities assigned to the repositories via the /build/_dispatchpriosAPI call
or via the dispatch_adjust array in the BSConfig.pmSection 2.1.2.2, “BSConfig.pm” configuration le.

80 Configuring Source Publisher

4.5.1 The /build/_dispatchprios API Call

The /build/_dispatchprios API call allows an Admin to set a priority for defined projects and
repositories using the HTML put method. With the HTML get method the current XML priority
le can be read.

<dispatchprios>
 <prio project="ProjectName" repository="RepoName" arch="Architecture" adjust="Number" /
>
</dispatchprios>

The attributes project, repository and arch are all optional, if for example arch and repository are
missing the entry is used for all repositories and architectures for the given project. It is not
supported to use regular expressions for the names. The adjust value is taken as logarithmic scale
factor to the current load of the repositories during the compare. Projects without any entry get
a default priority of 0, higher values cause the matching projects to get more build time.

Example dispatchprios XML le

<dispatchprios>
 <prio project="DemoProject1" repository="openSUSE_Leap_42.1" adjust="10" />
 <prio project="Test1" adjust="5" />
 <prio project="Test11" repository="openSUSE_13.2" arch="i586" adjust="-10"/>
</dispatchprios>

TABLE 4.1: ROUNDED SCALE FACTORS RESULTING FROM A PRIORITY

priority scale factor priority scale factor

-50 100000 3 0.5

-30 1000 5 0.3

-20 100 7 0.2

-15 30 10 0.1

-10 10 15 0.03

-7 5 20 0.01

-5 3 30 0.001

-3 2 40 0.0001

81 The /build/_dispatchprios API Call

priority scale factor priority scale factor

0 1 50 0.00001

4.5.2 dispatch_adjust Array

With the dispatch_adjust array in the BSConfig.pm le the dispatch priorities of project repos-
itories based on regular expressions for the project, repository name and maybe architecture.
Each match will add or subtract a value to the priority of the repository. The default priority is
0, higher values cause the matching projects to get more build time.

Each entry in the dispatch_adjust array has the format

'regex string' => priority adjustment

The full name of a build repository looks like

Project:Subproject/Repository/Architecture

Examples:
 Devel:Science/SLES-11/i586
 home:king:test/Leap42/x86_64

If a repository matches a string the adjustment is added to the current value. The final value is
the sum of the adjustments of all matched entries. This sum is the same logarithmic scale factor
as described in the previous section.

Example dispatch_adjust definition in the BSConfig.pm

our $dispatch_adjust = [
 'Devel:' => 7,
 'HotFix:' => +20,
 '.+:test.*' => -10,
 'home:' => -3,
 'home:king' => +30,
 '.+/SLE12-SP2' => -40,
];

The above example could have the following background: All Devel projects should get some
higher priority so the developer jobs getting more build time. The projects under HotFix are
very important fixes for customers and so they should get a worker as soon as possible. All
projects with test in the name get some penalty, also home projects are getting only about half

82 dispatch_adjust Array

of the build time as a normal project, with the exception of the home project from king, the
user account of the boss. The SLES12-SP2 repository is not in real use yet, but if here is nothing
else to do, build for it as well.

Important
The dispatcher calculates the values form the 'dispatch_adjust' array rst, if the same
project and repository also has an entry in the dispatchprios XML le, the XML le entry
will overwrite the calculated priority. The best practice is to only use one of the methods.

4.6 Publisher Hooks

The job of the publisher service is to publish the built packages and/or images by creating
repositories that are made available through a web server.

It can be configured to use custom scripts to copy the build results to different servers or do
anything with them that comes to mind. These scripts are called publisher hooks.

4.6.1 Configuring Publisher Hooks

Hooks are configured via the configuration le /usr/lib/obs/server/BSConfig.pm, where one script
per project is linked to the repository that should be run if the project/repository combination
is published. It is possible to use regular expressions here.

The script is called by the user obsrun with the following parameters:

1. information about the project and its repository (for example, training/SLE11-SP1)

2. path to published repository (for example, /srv/obs/repos/training/SLE11-SP1)

3. changed packages (for example, x86 64/test.rpm x86 64/utils.rpm)

The hooks are configured by adding a hash reference named $publishedhook to the BSConfig.pm
configuration le. The key contains the project, and the value references the accompanying
script. If the value is written as an array reference it is possible to call the hook with self-defined
parameters.

83 Publisher Hooks

The publisher will add the 3 listed parameters at the end, after the self-defined parameters (in
/usr/lib/obs/server/BSConfig.pm):

our $publishedhook = {
 "Product/SLES12" => "/usr/local/bin/script2run_sles12",
 "Product/SLES11-SP3" => "/usr/local/bin/script2run_sles11",
 "Product/SLES11-SP4" => "/usr/local/bin/script2run_sles11",
};

Regular expressions or substrings can be used to define a script for more than one repository
in one project. The use of regular expressions has to be activated by defining $publishedhook
use regex = 1; as follows (in /usr/lib/obs/server/BSConfig.pm):

our $publishedhook_use_regex = 1;
our $publishedhook = {
 "Product\/SLES12" => "/usr/local/bin/script2run_sles12",
 "Product\/SLES11.*" => "/usr/local/bin/script2run_sles11",
};

With self defined parameters:

our $publishedhook_use_regex = 1;
our $publishedhook = {
 "Product\/SLES11.*" => ["/usr/local/bin/script2run", "sles11", "/srv/www/
public_mirror"],
};

The configuration is read by the publisher at startup only, so it has to be restarted after config-
uration changes have been made. The hook script’s output is not logged by the publisher and
should be written to a log le by the script itself. In case of a broken script,this is logged in the
publisher’s log le (/srv/obs/log/publisher.log by default):

Mon Mar 7 14:34:17 2016 publishing Product/SLES12
 fetched 0 patterns
 running createrepo
 calling published hook /usr/local/bin/script2run_sles12
 /usr/local/bin/script2run_sles12 failed: 65280
 syncing database (6 ops)

Interactive scripts are not working and will fail immediately.

If you need to do a lot of work in the hook script and do not want to block the publisher all the
time, you should consider using a separate daemon that does all the work and just gets triggered
by the configured hook script.

84 Configuring Publisher Hooks

The scripts are called without a timeout.

4.6.2 Example Publisher Scripts

4.6.2.1 Simple Publisher Hook

The following example script ignores the packages that have changed and copies all RPMs from
the repository directory to a target directory:

#!/bin/bash
OBSHOME="/srv/obs"
SRC_REPO_DIR="$OBSHOME/repos"
LOGFILE="$OBSHOME/log/reposync.log"
DST_REPO_DIR="/srv/repo-mirror"
Global substitution! To handle strings like Foo:Bar:testing - two
#+double-colons!
PRJ_PATH=${1//:/:\/}
PATH_TO_REPO=$2
rsync -a --log-file=$LOGFILE --mkpath $PATH_TO_REPO/ $DST_REPO_DIR/$PRJ_PATH/

For testing purposes, it can be invoked as follows:

$ sudo -u obsrun /usr/local/bin/publish-hook.sh Product/SLES11-SP1 \
 /srv/obs/repos/Product/SLE11-SP1

4.6.2.2 Advanced Publisher Hook

The following example script reads the destination path from a parameter that is configured
with the hook script:

#!/bin/bash
LOGFILE="/srv/obs/log/reposync.log"
DST_REPO_DIR=$1
Global substion! To handle strings like Foo:Bar:testing - two
#+double-colons!
PRJ_PATH=${2//:/:\/}
PATH_TO_REPO=$3
mkdir -p $DST_REPO_DIR/$PRJ_PATH
rsync -a --log-file=$LOGFILE --mkpath $PATH_TO_REPO/ $DST_REPO_DIR/$PRJ_PATH/

For testing purposes, it can be invoked as follows:

$ sudo -u obsrun /usr/local/bin/publish-hook.sh \

85 Example Publisher Scripts

 /srv/www/public_mirror/Product/SLES11-SP1 \
 /srv/obs/repos/Product/SLE11SP1

The following example script only copies packages that have changed, but does not delete pack-
ages that have been removed:

#!/bin/bash

DST_REPO_DIR=$1
PRJ_PATH=${2//:/:\/}
PATH_TO_REPO=$3
shift 3

mkdir -p $DST_REPO_DIR/$PRJ_PATH

while [$# -gt 0]
do
 dir=(${1//\// })
 if [! -d "$DST_REPO_DIR/$PRJ_PATH/$dir"]; then
 mkdir -p $DST_REPO_DIR/$PRJ_PATH/$dir
 fi
 cp $PATH_TO_REPO/$1 $DST_REPO_DIR/$PRJ_PATH/$1
 shift
done

createrepo $DST_REPO_DIR/$PRJ_PATH/.

For testing purposes, it can be invoked as follows:

$ sudo -o obsrun /usr/local/bin/publish-hook.sh /srv/www/public_mirror \
 Product/SLES11-SP1 /srv/obs/repos/Product/SLE11-SP1 \
 src/icinga-1.13.3-1.3.src.rpm x86_64/icinga-1.13.3-1.3.x86_64.rpm \
 x86_64/icinga-devel-1.13.3-1.3.x86_64.rpm

4.7 Unpublisher Hooks

The job of the publisher service is to publish the built packages and/or images by creating
repositories that are made available through a web server.

The OBS Publisher can be configured to use custom scripts to be called whenever already pub-
lished packages get removed. These scripts are called unpublisher hooks. Unpublisher hooks
are run before the publisher hooks.

86 Unpublisher Hooks

4.7.1 Configuring Unpublisher Hooks

Hooks are configured via the configuration le /usr/lib/obs/server/BSConfig.pm, where one script
per project is linked to the repository that should be run if the project/repository combination
is removed. It is possible to use regular expressions here.

The script is called by the user obsrun with the following parameters:

1. information about the project and its repository (for example, training/SLE11-SP1)

2. repository path (for example, /srv/obs/repos/training/SLE11-SP1)

3. removed packages (for example, x86 64/test.rpm x86 64/utils.rpm)

The hooks are configured by adding a hash reference named $unpublishedhook to the BSConfig.pm
configuration le. The key contains the project and the value references the accompanying
script. If the value is written as an array reference, it is possible to call the hook with custom
parameters.

The publisher adds the three listed parameters at the end, directly after the custom parameters
(in /usr/lib/obs/server/BSConfig.pm):

our $unpublishedhook = {
 "Product/SLES12" => "/usr/local/bin/script2run_sles12",
 "Product/SLES11-SP3" => "/usr/local/bin/script2run_sles11",
 "Product/SLES11-SP4" => "/usr/local/bin/script2run_sles11",
};

Regular expressions or substrings can be used to define a script for more than one repository in
one project. The use of regular expressions needs to be activated by defining $unpublishedhook
use regex = 1; (in /usr/lib/obs/server/BSConfig.pm):

our $unpublishedhook_use_regex = 1;
our $unpublishedhook = {
 "Product\/SLES12" => "/usr/local/bin/script2run_sles12",
 "Product\/SLES11.*" => "/usr/local/bin/script2run_sles11",
};

With custom parameters:

our $unpublishedhook_use_regex = 1;
our $unpublishedhook = {
 "Product\/SLES11.*" => [
 "/usr/local/bin/script2run", "sles11", "/srv/www/public_mirror"

87 Configuring Unpublisher Hooks

],
};

The configuration is read by the publisher at startup only, so it has to be restarted after config-
uration changes have been made. The hook script’s output is not logged by the publisher and
should be written to a log le by the script itself. In case of a broken script, this is logged in the
publisher’s log le (/srv/obs/log/publisher.log by default):

Mon Mar 7 14:34:17 2016 publishing Product/SLES12
 fetched 0 patterns
 running createrepo
 calling unpublished hook /usr/local/bin/script2run_sles12
 /usr/local/bin/script2run_sles12 failed: 65280
 syncing database (6 ops)

Interactive scripts are not working and will fail immediately.

If you need to do a lot of work in the hook script and do not want to block the publisher all
the time, consider using a separate daemon that does all the work and just gets triggered by
the configured hook script.

The scripts are called without a timeout.

Note
Reminder: If unpublish hooks and publish hooks are defined, the unpublish hook runs before
the publish hook.

4.7.2 Example Unpublisher Scripts

4.7.2.1 Simple Unpublisher Hook

The following example script deletes all packages from the target directory that have been re-
moved from the repository.

#!/bin/bash
OBSHOME="/srv/obs"
LOGFILE="$OBSHOME/log/reposync.log"
DST_REPO_DIR="/srv/repo-mirror"
Global substitution! To handle strings like Foo:Bar:testing - two
#+double-colons!

88 Example Unpublisher Scripts

PRJ_PATH=${1//:/:\/}
PATH_TO_REPO=$2

shift 2

while [$# -gt 0]
do
 rm -v $DST_REPO_DIR/$PRJ_PATH/$1 >>$LOGFILE 2>&1
 shift
done

For testing purposes, it can be invoked as follows:

$ sudo -u obsrun /usr/local/bin/unpublish-hook.sh \
 Product/SLES11-SP1 \
 /srv/obs/repos/Product/SLE11-SP1 \
 src/icinga-1.13.3-1.3.src.rpm \
 x86_64/icinga-1.13.3-1.3.x86_64.rpm \
 x86_64/icinga-devel-1.13.3-1.3.x86_64.rpm

4.7.2.2 Advanced Unpublisher Hook

The following example script reads the destination path from a parameter that is configured
via the hook script:

#!/bin/bash
OBSHOME="/srv/obs"
LOGFILE="$OBSHOME/log/reposync.log"
DST_REPO_DIR=$1
Global substitution! To handle strings like Foo:Bar:testing - two
#+double-colons!
PRJ_PATH=${1//:/:\/}
PATH_TO_REPO=$2

shift 3

while [$# -gt 0]
do
 rm -v $DST_REPO_DIR/$PRJ_PATH/$1 >>$LOGFILE 2>&1
 shift
done

For testing purposes, it can be invoked as follows:

$ sudo -u obsrun /usr/local/bin/unpublish-hook.sh \

89 Example Unpublisher Scripts

 /srv/www/public_mirror/Product/SLES11-SP1 \
 /srv/obs/repos/Product/SLE11SP1 \
 src/icinga-1.13.3-1.3.src.rpm \
 x86_64/icinga-1.13.3-1.3.x86_64.rpm \
 x86_64/icinga-devel-1.13.3-1.3.x86_64.rpm

4.8 Managing Users and Groups
The OBS has an integrated user and group management with a role based access rights model.
In every OBS instance, at least one user need to exist and have the global Admin role assigned.
Groups can be defined by the Admin and instead of adding a list of users to a project/package
role user can be added to a group and the group will be added to a project or package role.

4.8.1 User and Group Roles

The OBS role model has one global role: Admin, which can be granted to users. An OBS admin
has access to all projects and packages via the API interface and the web user interface. Some
menus in the Web UI do not allow changes by an Admin (for example, the Repository menu)
as long the Admin is not a Maintainer for the project as well. But the same change can be done
via editing the metadata directly. The other roles are specific to projects and packages and can
be assigned to a user or a group.

TABLE 4.2: ROLES IN OBS

Role Description Remarks

Maintainer Read and write access to projects or
packages

Bugowner Read access to projects or packages should be unique per package

Reader Read access to sources

Down-
loader

Read access to the binaries

Reviewer Default reviewer for a package or
project

90 Managing Users and Groups

4.8.2 Standalone User and Group Database

OBS provides its own user database which can also store a password. The authentication to
the API happens via HTTP BASIC AUTH. See the API documentation to nd out how to create,
modify or delete user data. Also a call for changing the password exists.

Users can be added by the maintainer or if registration is allowed via the registration menu
on the Web UI. It can be configured that a confirmation is needed after registration before the
user may login.

4.8.3 Users and Group Maintainers

Administrators can create groups, add users to them, remove users from them and give Main-
tainer rights to users. This way, a maintainer will be able to also add, remove and give main-
tainer rights to other users.

osc api -d "<group><title><group-title></title><email><group-email></email><maintainer
 userid="<user-name>"/><person><person userid="<user_name>"/></person></group>' -X PUT "/
group/<group-title>"

4.8.4 Gravatar for Groups

In certain cases, it might be desirable to show a Gravatar for a group, similar to the users. In
order to show a Gravatar, an email address is needed. Therefore, it is necessary that an admin
adds an email address to the group through the API. This can be a achieved by

osc api -X POST "/group/<group-title>?cmd=set_email&email=<groups-email-address>"

4.8.5 Proxy Mode

The proxy mode can be used for specially secured instances, where the OBS web server shall not
get connected to the network directly. There are authentication proxy products out there which
do the authentication and send the user name via an HTTP header to OBS. Originally, this was
developed for IChain - a legacy single login authentication method from Novell. This also has
the advantage that the user password never reaches OBS.

The proxy mode can also be used for LDAP or Active Directory, but only for authentication.

91 Standalone User and Group Database

Important
With enabled proxy mode the OBS trust the username in the http header. Since this was
verified by the Web server and the Web server only forward requests for a verified and
authenticated session, this is safe, as long you make sure that the direct web/API interface
of the OBS is not reachable from the outside.

With the proxy mode the user still need to be registered in the OBS and all OBS roles and user
properties are managed inside the OBS.

4.8.5.1 OBS Proxy Mode Configuration

Currently the LDAP configuration is in the options.yml le.

TABLE 4.3: OPTIONS FOR PROXY MODE CONFIGURATION

Config item Description Values de-
fault

Remarks

proxy_auth_mode turn proxy mode on/
o

:off :on need to be :o if
ldap_mode: is :on

4.8.6 LDAP/Active Directory

Note
The LDAP support was considered experimental and not officially supported. It is officially
supported since 2.8.3 release.

Using LDAP or Active Directory as source for user and optional group information in environ-
ments which already have such a server has the advantage for the admin people that the user
related information only need to be maintained in one place. In the following sections we are
writing LDAP, but this includes Microsoft's Active Directory as well. Only in parts where differ-
ences exists Active Directory (AD) will be explicit mentioned.

In this mode the OBS contact the LDAP server directly from the OBS API, if the user was found
and provides the correct password the user is added transparently to the OBS user database.
The password or password hash is not stored in the OBS database. Because the user database

92 LDAP/Active Directory

password eld is mandatory, a random hash is stored instead. The LDAP interface allows to
restrict the access to users which are in a special LDAP group. Optional also groups can be
discovered from the LDAP server. This can be also filtered.

Before anybody can add a user to a package or project with a role, the user need to had logged
in at least one time, since the check for available users is local only. If the LDAP group mode
is enabled, LDAP groups are also added transparently, if an existing group on the LDAP server
is added to a project or package.

On bigger installations this mode can result in many search requests to the LDAP server and slow
down access to projects and packages, because on every role check an LDAP search operation
will contact the LDAP server. As alternative method group mirroring was implemented. This
allows that the internal OBS group database is updated with the group membership information
during the user authentication. All role test are made local against the OBS database and do not
need additional LDAPoperations.

Note
The local user group membership in :mirror mode is updated as follows: When the user
logins, the user memberOf attributes are parsed and compared with the global OBS grou-
plist, if a group matches, the user is added, if they are no longer a group member, they
are removed. since this maybe a costly operation, depending on the group counts, this is
only done on a full login. After a full login the user status is cashed for 2 minutes, if the
user do a login during this time, nothing will be checked or updated. Here is a second
mechanism to update user membership: If somebody adds a new Group in the OBS, the
member attributes of the group are parsed and all current users which are in the local
database become members.

4.8.6.1 OBS LDAP Configuration

Currently the main OBS LDAP configuration is in the le options.yml . Beside the settings in
that le, the openLDAP configuration le is also evaluated by the Ruby LDAP implementation.
This configuration le is usually located at /etc/openldap/ldap.conf . You can set here ad-
ditional TLS/SSL directives like TLS_CACERT , TLS_CACERTDIR and TLS_REQCERT . For more
information refer to the openLDAP man page (man ldap.conf).

93 LDAP/Active Directory

Note
When LDAP mode is activated, users can only log in via LDAP. This also includes existing
admin accounts. To make a LDAP user an admin, use a rake task which can be run on the
OBS instance. For example, to make user tux , use:

cd /srv/www/obs/api
bundle exec rake user:give_admin_rights tux RAILS_ENV=production

TABLE 4.4: LDAP CONFIGURATION OPTIONS

Config item Description Values de-
fault

Remarks

ldap_mode OBS LDAP mode on/
o

:off :on

ldap_servers List of LDAP servers colon-separated list

ldap_max_attempts tries to ping LDAP
server

int 15

ldap_search_timeout timeout of an LDAP
search

int 0…N 5 0 wait for ever

ldap_user_memberof_attr User attribute for
Group membership

memberOf case sensitive

ldap_group_member_attr Group attribute for
members

member

ldap_ssl use ldaps port and pro-
tocol

:off :on

ldap_start_tls usr Start TLS on LDAP
protocol

:o :on

ldap_port LDAP portnumbers if not set 389 for
LDAP, 636 for LDAPS

94 LDAP/Active Directory

Config item Description Values de-
fault

Remarks

ldap_referrals Windows 2003 AD re-
quires

:off :on

ldap_search_base company’s LDAP
search base for the
users who will use OBS

none

ldap_search_attr user ID attribute sAMAccount-

Name uid
sAMAccountName for
AD, uid for openldap

ldap_name_attr Full user name cn

ldap_mail_attr Attribute for users
email

mail

ldap_search_user Bind user for LDAP
search

for example, cn=l-
dapbind, ou=sys-
tem, dc=mycompany,
dc=com

ldap_search_auth Password for the
ldap_search_user

ldap_user_filter Search filter for OBS
users

for example, a group
membership, empty all
users allowed

ldap_authenticate How user how the cre-
dentials are verified

:ldap :local only use :ldap

ldap_auth_mech Used auth mech :md5 :cleart-
ext

only if local

ldap_auth_attr Used auth attribute
for :local

userPass-

word

do not use

95 LDAP/Active Directory

Config item Description Values de-
fault

Remarks

ldap_group_support Import OBS groups
from LDAP

:off

:on :mirror
see text

ldap_group_search_base company’s LDAP
search base for groups

ldap_group_title_attr Attribute of the group
name

cn

ldap_group_objectclass_at-
tr

Object class for group Group

ldap_obs_admin_group Group name for OBS
Admins

if set, members of that
group become OBS ad-
min role

Example LDAP section of the options.yml le:

[...]
##################
LDAP options
##################

ldap_mode: :on
LDAP Servers separated by ':'.
OVERRIDE with your company's ldap servers. Servers are picked randomly for
each connection to distribute load.
ldap_servers: ldap1.mycompany.com:ldap2.mycompany.com

Max number of times to attempt to contact the LDAP servers
ldap_max_attempts: 15

timeout of an ldap search requests to avoid infinitely lookups (in seconds, 0 no
 timeout)
ldap_search_timeout: 5

The attribute the user member of is stored in (case sensitive !)
ldap_user_memberof_attr: memberOf

Perform the group_user search with the member attribute of group entry or memberof
 attribute of user entry

96 LDAP/Active Directory

It depends on your ldap define
The attribute the group member is stored in
ldap_group_member_attr: member

If you're using ldap_authenticate=:ldap then you should ensure that
ldaps is used to transfer the credentials over SSL or use the StartTLS extension
ldap_ssl: :on

Use StartTLS extension of LDAP
ldap_start_tls: :off

LDAP port defaults to 636 for ldaps and 389 for ldap and ldap with StartTLS
#ldap_port:
Authentication with Windows 2003 AD requires
ldap_referrals: :off

OVERRIDE with your company's ldap search base for the users who will use OBS
ldap_search_base: ou=developmentt,dc=mycompany,dc=com
Account name attribute (sAMAccountName for Active Directory, uid for openLDAP)
ldap_search_attr: sAMAccountName
The attribute the users name is stored in
ldap_name_attr: cn
The attribute the users email is stored in
ldap_mail_attr: mail
Credentials to use to search ldap for the username
ldap_search_user: "cn=ldapbind,ou=system,dc=mycompany,dc=com"
ldap_search_auth: "top secret"

By default any LDAP user can be used to authenticate to the OBS
In some deployments this may be too broad and certain criteria should
be met; eg group membership
#
To allow only users in a specific group uncomment this line:
ldap_user_filter: (memberof=cn=obsusers,ou=groups,dc=mycompany,dc=com)
#
Note this is joined to the normal selection like so:
(&(#{dap_search_attr}=#{login})#{ldap_user_filter})
giving an ldap search of:
(&(sAMAccountName=#{login})(memberof=CN=group,OU=Groups,DC=Domain Component))
#
Also note that openLDAP must be configured to use the memberOf overlay

ldap_authenticate says how the credentials are verified:
:ldap = attempt to bind to ldap as user using supplied credentials
:local = compare the credentials supplied with those in
LDAP using #{ldap_auth_attr} & #{ldap_auth_mech}
if :local is used then ldap_auth_mech can be

97 LDAP/Active Directory

:md5
:cleartext
ldap_authenticate: :ldap
ldap_auth_mech: :md5
This is a string
ldap_auth_attr: userPassword

Whether to search group info from ldap, it does not take effect it is not set
Please also set below ldap_group_* configs correctly to ensure the operation works
 properly
Possible values:
:off disabled
:on enabled; every group member operation ask the LDAP server
:mirror enabled; group membership is mirrored and updated on user login
#
ldap_group_support: :mirror

OVERRIDE with your company's ldap search base for groups
ldap_group_search_base: ou=obsgroups,dc=mycompany,dc=com

The attribute the group name is stored in
ldap_group_title_attr: cn

The value of the group objectclass attribute
group for Active Directory, groupOfNames in openLDAP
ldap_group_objectclass_attr: group

The LDAP group for obs admins
if this group is set and a user belongs to this group they get the global admin role
#
ldap_obs_admin_group: obsadmins

4.8.7 Authentication Methods

4.8.7.1 LDAP Methods

The LDAP mode has 2 methods to check authorization:

1. LDAP bind method.
With the provided credentials, an LDAP bind request is tried.

2. Local method.
The provided credentials checked locally against the content of the userPassword attribute.

98 Authentication Methods

Important
The local method should be not used, since the userPassword attribute in most LDAP
installations will not be available until you are bind with a privilege user.

4.8.7.2 Kerberos

In OBS you can use single sign on via Kerberos tickets.

OBS Kerberos configuration resides in the options.yml le.

TABLE 4.5: KERBEROS CONFIGURATION OPTIONS

Config item Description Example

kerberos_keytab Kerberos key table: le where long-
term keys for one or more principals
are stored

"/etc/krb5.keytab"

kerberos_service_principal Kerberos OBS principal: OBS unique
identity to which Kerberos can as-
sign tickets

"HTTP/hostname.ex-
ample.com@EXAM-
PLE.COM"

kerberos_realm Kerberos realm: authentication ad-
ministrative domain

"EXAMPLE.COM"

Example Kerberos section of the options.yml le:

[...]

##################
Kerberos options
##################

kerberos_mode: true
kerberos_keytab: "/etc/krb5.keytab"
kerberos_service_principal: "HTTP/hostname.example.com@EXAMPLE.COM"
kerberos_realm: "EXAMPLE.COM"

[...]

99 Authentication Methods

Note
Once Kerberos is enabled, only users with logins that match users known to Kerberos will
be able to authenticate to OBS. It is recommended to give admin rights to a matching
user before enabling Kerberos mode.

4.8.7.3 OBS Token Authorization

OBS 2.5 provides a mechanism to create tokens for specific operations. This can be used to allow
certain operations in the name of a user to others. This is esp. useful when integrating external
infrastructure. The create token should be kept secret by default, but it can also be revoked at
any time if it became obsolete or leaked.

4.8.7.3.1 Managing Tokens of a User

Tokens belong always to a user. A list of active tokens can received via

osc token

osc token --delete <TOKEN>

4.8.7.3.2 Executing a Source Service

A token can be used to execute a source service. The source service has to be setup for the
package rst, check the source service chapter for this. A typical example is to update sources
of a package from git. A source service for that can be setup with

osc add git://....

A token can be registered as generic token, means allowing to execute all source services in OBS
if the user has permissions. You can create such a token and execute the operation with

osc token --create

osc token --trigger <TOKEN> <PROJECT> <PACKAGE>

osc api -X POST /trigger/runservice?token=<TOKEN>&project=<PROJECT>&package=<PACKAGE>

100 Authentication Methods

You can also limit the token to a specific package. The advantage is that the operation is limited
to that package, so less bad things can happen when the token leaks. Also you do not need to
specify the package on execution time. Create and execute it with

osc token --create <PROJECT> <PACKAGE>

osc token --trigger <TOKEN>

osc api -X POST /trigger/runservice?token=<TOKEN>

4.9 Message Bus for Event Notifications

The OBS has an integrated notification subsystem for sending events that are happening in our
app through a message bus. We have chosen RabbitMQ (https://www.rabbitmq.com/) as our
message bus server technology based on the AMQP (https://www.amqp.org/) protocol.

4.9.1 RabbitMQ

RabbitMQ claims to be "the most popular open source message broker". Meaning that it can deliver
asynchronous messages in many different exchange ways (one to one, broadcasting, based on
topics). It also includes a flexible routing system based on queues.

RabbitMQ is lightweight and easy to deploy on premises and in the cloud. It supports multiple
messaging protocols too. And can be deployed in distributed and federated configurations to
meet high-scale, high-availability requirements.

4.9.1.1 Configuration

Currently the RabbitMQ configuration is in the le options.yml . All those options there start
with the prefix amqp. These configuration items match with some of the calls we do using the
Bunny (http://rubybunny.info/) gem.

101 Message Bus for Event Notifications

https://www.rabbitmq.com/
https://www.amqp.org/
http://rubybunny.info/

TABLE 4.6: RABBITMQ CONFIGURATION OPTIONS

Config item Description Values de-
fault

Remarks

amqp_namespace Namespace for the
queues of this instance

'open-

suse.obs'

Is a prefix for the
queue names

amqp_options Connection configura-
tion

See this guide (http://

rubybunny.info/arti-

cles/connecting.html)

to know which are the
parameters allowed.

amqp_options[host] Server host A valid hostname

amqp_options[port] Server port 5672

amqp_options[user] User account

amqp_options[pass] Account password

amqp_options[vhost] Virtual host

amqp_exchange_name Name for the exchange

amqp_exchange_options Exchange configura-
tion

See this guide (http://

rubybunny.info/arti-

cles/exchanges.html)

to know more about
exchanges.

amqp_exchange_option-
s[type]

Type of communica-
tion for the exchange

direct

amqp_exchange_option-
s[auto_delete]

If set, the exchange
is deleted when all
queues have finished
using it

false

102 RabbitMQ

http://rubybunny.info/articles/connecting.html
http://rubybunny.info/articles/connecting.html
http://rubybunny.info/articles/connecting.html
http://rubybunny.info/articles/exchanges.html
http://rubybunny.info/articles/exchanges.html
http://rubybunny.info/articles/exchanges.html

Config item Description Values de-
fault

Remarks

amqp_exchange_option-
s[arguments]

More configuration for
plugins / extensions

amqp_queue_options Queues configuration See this guide (http://

rubybunny.info/arti-

cles/queues.html)

to know more about
queues.

amqp_queue_option-
s[durable]

Should this queue be
durable?

false

amqp_queue_options[au-
to_delete]

Should this queue be
automatically delet-
ed when the last con-
sumer disconnects?

false

amqp_queue_options[ex-
clusive]

Should this queue be
exclusive (only can
be used by this con-
nection, removed
when the connection is
closed)?

false

amqp_queue_options[ar-
guments]

Additional optional
arguments (typically
used by RabbitMQ ex-
tensions and plugins)

Example of the RabbitMQ section of the options.yml le:

[...]
RabbitMQ based message bus
#
Prefix of the message bus rooting key

103 RabbitMQ

http://rubybunny.info/articles/queues.html
http://rubybunny.info/articles/queues.html
http://rubybunny.info/articles/queues.html

amqp_namespace: 'opensuse.obs'

Connection options -> http://rubybunny.info/articles/connecting.html

amqp_options:
 host: rabbit.example.com
 port: 5672
 user: guest
 pass: guest
 vhost: /vhost

Exchange options -> http://rubybunny.info/articles/exchanges.html

amqp_exchange_name: pubsub
amqp_exchange_options:
 type: topic
 auto_delete: false
 arguments:
 persistent: true
 passive: true

Queue options -> http://rubybunny.info/articles/queues.html
amqp_queue_options:
 durable: false
 auto-delete: false
 exclusive: false
 arguments:
 extension_1: blah

TABLE 4.7: LIST OF EVENT MESSAGES / QUEUES FOR THE MESSAGE BUS

Queue Name Description Payload

__prefix__.package.build_success A package build has succeeded :project, :pack-
age, :reposito-
ry, :arch, :re-
lease, :readytime, :s-
rcmd5, :rev, :rea-
son, :bcnt, :ver-
ifymd5, :start-
time, :end-
time, :work-
erid, :versrel, :build-
type

104 RabbitMQ

Queue Name Description Payload

__prefix__.package.build_fail A package build has failed :project, :pack-
age, :reposito-
ry, :arch, :re-
lease, :readytime, :s-
rcmd5, :rev, :rea-
son, :bcnt, :ver-
ifymd5, :start-
time, :end-
time, :work-
erid, :versrel, :pre-
viouslyfailed, :suc-
cessive_failcoun-
t, :buildtype

__prefix__.package.build_unchanged A package build has succeeded
with unchanged result

:project, :pack-
age, :reposito-
ry, :arch, :re-
lease, :readytime, :s-
rcmd5, :rev, :rea-
son, :bcnt, :ver-
ifymd5, :start-
time, :end-
time, :work-
erid, :versrel, :build-
type

__prefix__.package.create A new package was created :project, :pack-
age, :sender

__prefix__.package.update The package metadata was up-
dated

:project, :pack-
age, :sender

__prefix__.package.delete A package was deleted :project, :pack-
age, :sender, :com-
ment

105 RabbitMQ

Queue Name Description Payload

__prefix__.package.undelete A package was undeleted :project, :pack-
age, :sender, :com-
ment

__prefix__.package.branch A package was branched :project, :pack-
age, :sender, :target-
project, :targetpack-
age, :user

__prefix__.package.commit A package has committed
changes

:project, :pack-
age, :sender, :com-
men-
t, :user, :les, :rev, :re-
questid

__prefix__.package.upload Sources of a package were up-
loaded

:project, :pack-
age, :sender, :com-
ment, :filename, :re-
questid, :tar-
get, :user

__prefix__.package.service_success Source service succeeded for a
package

:commen-
t, :project, :pack-
age, :sender, :rev, :user, :re-
questid

__prefix__.package.service_fail Source service failed for a pack-
age

:comment, :er-
ror, :project, :pack-
age, :sender, :rev, :user, :re-
questid

__prefix__.package.version_change A package has changed its ver-
sion

:project, :pack-
age, :sender, :com-
ment, :re-

106 RabbitMQ

Queue Name Description Payload

questid, :les, :rev, :newver-
sion, :user, :oldver-
sion

__prefix__.package.comment A new comment for the pack-
age was created

:project, :pack-
age, :sender, :com-
menters, :com-
menter, :commen-
t_body, :commen-
t_title

__prefix__.project.create A new project was created :project, :sender

__prefix__.project.update_project_conf The project configuration was
updated

:project, :sender, :les, :com-
ment

__prefix__.project.update A project was updated :project, :sender

__prefix__.project.delete A project was deleted :project, :commen-
t, :requestid, :sender

__prefix__.project.undelete A project was undeleted :project, :commen-
t, :sender

__prefix__.project.comment A new comment for the project
was created

:project, :com-
menters, :com-
menter, :commen-
t_body, :commen-
t_title

__prefix__.repo.packtrack Binary was published in the
repository

:project, :repo, :pay-
load

__prefix__.repo.publish_state Publish State of Repository has
changed

:project, :repo, :s-
tate

__prefix__.repo.published A repository was published :project, :repo

107 RabbitMQ

Queue Name Description Payload

__prefix__.repo.build_started Repository (re)started building :project, :re-
po, :arch, :buildid

__prefix__.repo.build_finished Repository finished building :project, :re-
po, :arch, :buildid

__prefix__.repo.status_report Status Check for Finished
Repository Created

:project, :re-
po, :arch, :buildid

__prefix__.request.create A request was created :author, :com-
ment, :descrip-
tion, :num-
ber, :actions, :s-
tate, :when, :who, :d-
iff (local projects)

__prefix__.request.change A request was changed (admin
only)

:author, :com-
ment, :descrip-
tion, :num-
ber, :actions, :s-
tate, :when, :who

__prefix__.request.delete A request was deleted :author, :com-
ment, :descrip-
tion, :num-
ber, :actions, :s-
tate, :when, :who

__prefix__.request.state_change The state of a request was
changed

:author, :com-
ment, :descrip-
tion, :num-
ber, :actions, :s-
tate, :when, :who, :old-
state

108 RabbitMQ

Queue Name Description Payload

__prefix__.request.review_wanted A request requires a review :author, :com-
ment, :descrip-
tion, :num-
ber, :actions, :s-
tate, :when, :who, :re-
viewer-
s, :by_user, :by_group, :by_project, :by_pack-
age, :diff (local
projects)

__prefix__.request.review_changed Request was reviewed :reviewer-
s, :by_user, :by_group, :by_project, :by_pack-
age

__prefix__.request.reviews_done All reviews of request have
been completed

:author, :com-
ment, :descrip-
tion, :num-
ber, :actions, :s-
tate, :when, :who, :re-
viewer-
s, :by_user, :by_group, :by_project, :by_pack-
age, :diff (local
projects)

__prefix__.request.comment A new comment for the request
was created

:author, :com-
ment, :descrip-
tion, :num-
ber, :actions, :s-
tate, :when, :who, :com-
menters, :com-
menter, :com-
ment_body, :com-
ment_title, :re-
quest_number

109 RabbitMQ

Queue Name Description Payload

__prefix__.request.status_report :number

__prefix__.published.status_report Status Check for Published
Repository Created

:project, :re-
po, :buildid

4.10 Backup

Open Build Service configuration and content needs usually a backup. The following explains
suggested strategies and places considered for a backup.

4.10.1 Places to consider

The following is pointing to the places with admin configurations or user content. The default
location places are considered here.

4.10.1.1 Frontend Configuration

/srv/www/obs/api/config

/srv/www/obs/api/log (optional)

The configuration is not changing usually. It is enough to backup it after config changes.

4.10.1.2 Frontend Database

The MySQL/MariaDB database backup can be done in different ways. Please consider the data-
base manual for details. One possible way is to create dumps via mysqldump tool. The backup
should be done at the same point of time as the source server. Inconsistencies can be resolved
using the check_consistency tool.

110 Backup

4.10.1.3 Backend Configuration

The backend has a single configuration le which may got altered. This is by default /usr/lib/
obs/server/BSConfig.pm . The le is not supposed to be changed usually and it can only be done
by the system root user. A backup after a change is sufficient.

4.10.1.4 Backend Content

All backend content is below /srv/obs directory. This include the sources, build results and also
all configuration changes done by the OBS admin users.

4.10.2 Backup strategies

A backup is ideally taken only from a not running service. In real live this is usually not possible,
so it is important to run a backup on a production system.

4.10.2.1 Database

MySQL backup either directly from a non-primary node in the galera cluster (table dump locks
the database during operation) or from a mysql slave attached to the cluster.

4.10.2.2 Sources

The sources are supposed to be backup at the same time as the database. This can get achieved by
either having a dedicated instance for the source server or by having a backup of the following
directories.

/srv/obs/projects

/srv/obs/sources

4.10.2.3 Build Results

Full backups via snapshots, either offered by the SAN storage or via LVM snapshot methods.
Consistency is normally on repository level. Any inconsistency will be found by the scheduler
and content will be retriggered. This is not true for disabled builds like released builds.

111 Backup strategies

4.11 Restore
A restored system might contain inconsistencies if it was taken from a running service. These
can be resolved as follows.

4.11.1 Check and repair database inconsistencies

If either database portions or sources got restored there are chances for inconsistencies. These
can be found via

geeko > cd /srv/www/obs/api/
 geeko > ./bin/rails c
 geeko > ConsistencyCheckJob.new.perform

Single projects can be either checked with

geeko > cd /srv/www/obs/api/
 geeko > ./bin/rake check_project project="YOUR_PROJECT"

or inconsistencies xed via

geeko > cd /srv/www/obs/api/
 geeko > ./bin/rake fix_project project="YOUR_PROJECT"

4.11.2 Binaries

All build results are evaluated by the scheduler. Therefore any inconsistency can be detected by
the scheduler. One way is to enforce a cold start, which means that the scheduler would rescan
all sources and binaries and trigger builds where needed. This can be achieved by

geeko > rcobsscheduler stop # ensure no scheduler is running
 geeko > rm /srv/obs/run/*.state # remove all state files
 geeko > rcobsscheduler start

The scheduler state will be visible as in cold start. It may take a longer time, so it might be
more efficient to check only certain projects or architectures if needed. This can be triggered
in a running system by executing

geeko > obs_admin --check-project PROJECT ARCHITERCTURE

A deep check is necessary in case sources have been restored:

geeko > obs_admin --deep-check-project PROJECT ARCHITERCTURE

112 Restore

4.12 Repair Data Corruption
On-disk data might be corrupted independent of a restore. For example due to power outage,
filesystem or disk errors. A MySQL/Maria database in a cluster should repair itself in that case.
Data on disk in the backend parts can be checked and xed using an dedicated tool. See the
help of the tool for further details or run

geeko > /usr/lib/obs/server/bs_check_consistency --check-all

Data can be repaired using the x options.

4.13 Spider Identification
OBS is hiding specific parts/pages of the application from search crawlers (DuckDuckGo, Google,
etc.), mostly for performance reasons. Which user-agent strings are identified as crawlers con-
figured in the le /srv/www/obs/api/config/crawler-user-agents.json .

To update that list, you must run the command bundle exec rake voight_kampf:im-
port_user_agents in the root directory of your OBS instance. This downloads the current
crawler list of user agents as a JSON le into the config/ directory of the Rails application.

If you want to extend or edit this list, switch to the config/ directory and open the crawler-
user-agents.json le with the editor of your choice. The content can look like this:

[
 {
 "pattern": "Googlebot\\/",
 "url": "http://www.google.com/bot.html"
 },
 {
 "pattern": "Googlebot-Mobile"
 },
 {
 "pattern": "Googlebot-Image"
 },
 [...]
]

To add a new bot to this list, a pattern must be defined. This is required to identify a bot. Almost
all bots have their own user agent that they are sending to a Web server to identify them. For
example, the user agent of the Googlebot looks like this:

Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)

113 Repair Data Corruption

To choose the pattern for the new bot, compare the user agent of the bot you want to identify
with others and look for a part that is unique (like in the Googlebot example, the part: Google-
bot).

Let's assume we want to add the bot Geekobot to the list of bots and the user agent looks like this:

Mozilla/5.0 (compatible; Geekobot/2.1; +https://www.opensuse.org)

Our unique part would be Geekobot. So we add a new entry to the list of bots:

[
 {
 "pattern": "Googlebot\\/",
 "url": "http://www.google.com/bot.html"
 },
 {
 "pattern": "Googlebot-Mobile"
 },
 {
 "pattern": "Googlebot-Image"
 },
 [...]
 {
 "pattern": "Geekobot"
 }
]

Note
You can also use regular expressions in the pattern element.

Save the le and restart the Rails application and the bot Geekobot should be identified properly.

4.14 Worker in Kubernetes

Warning: Alpha Implementation
This is Alpha implementation and not recommended for production.

The Kubernetes device plugin deployed here makes several assumptions about which and
how many containers will have access to KVM device.

114 Worker in Kubernetes

The plugin also assumes availability of /dev/kvm on every node where the device-plug-
in-container is running

The build service worker itself has many backends to run its jobs. One of the preferred backends
is KVM.

This backend allows building inside a VM. This has many advantages from security and isolation
perspective.

When a build worker is running inside the containerized environment (for example, using Ku-
bernetes) access to KVM is not available.

For such situations Kubernetes provides access to host devices (for example: KVM, GPU…)
through device plugins.

So, /dev/kvm can be made available to containers via Kubernetes using device plug-
in API (https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plug-

ins/).

One of the implementations of K8s devices plugin for KVM is available here : https://github.com/

kubevirt/kubernetes-device-plugins

1. Use the following manifest to deploy the KVM device plugin in a container.
This plugin is packaged as k8s-device-plugin-kvm and corresponding con-
tainer built here: https://build.opensuse.org/package/show/home:sjamgade:branches:dev-

el:CaaSP:Head:ControllerNode/kubernetes-device-plugins-docker

apiVersion: apps/v1
kind: Deployment
metadata:
 name: kvm-deployment
spec:
 replicas: 1
 selector:
 matchLabels:
 app: kvm-server
 template:
 metadata:
 labels:
 app: kvm-server
 spec:
 containers:
 - name: kvm-pod
 command: ["/usr/bin/k8s-kvm"]
 args: ["-v", "3","-logtostderr"]

115 Worker in Kubernetes

https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://kubernetes.io/docs/concepts/extend-kubernetes/compute-storage-net/device-plugins/
https://github.com/kubevirt/kubernetes-device-plugins
https://github.com/kubevirt/kubernetes-device-plugins
https://build.opensuse.org/package/show/home:sjamgade:branches:devel:CaaSP:Head:ControllerNode/kubernetes-device-plugins-docker
https://build.opensuse.org/package/show/home:sjamgade:branches:devel:CaaSP:Head:ControllerNode/kubernetes-device-plugins-docker

 image: registry.opensuse.org/home/sjamgade/branches/devel/caasp/head/
controllernode/containers/my_container
 imagePullPolicy: IfNotPresent
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 - SYS_NICE
 privileged: True
 runAsUser: 0
 volumeMounts:
 - name: device-plugins-socket
 mountPath: /var/lib/kubelet/device-plugins
 hostname: kvm-server
 volumes:
 - name: device-plugins-socket
 hostPath:
 path: /var/lib/kubelet/device-plugins

2. Build container image of the build service locally and load it to all worker nodes.
There is sample project le here: https://build.opensuse.org/package/show/home:sjam-

gade:branches:OBS:Server:Unstable/OBS-Appliance docker load < "/path/to/dock-
er.archive.tar.gz"

3. Use the following manifest to deploy the build service worker.
Here ports are hard-coded to allow easy integration with local kubelet without requiring
a separate ingress-controller

apiVersion: apps/v1
kind: Deployment
metadata:
 name: worker-deployment-1
spec:
 replicas: 1
 selector:
 matchLabels:
 app: obsworkerappname
 template:
 metadata:
 labels:
 app: obsworkerappname
 spec:
 containers:
 - name: test-worker-pod
 command: ["/bin/bash"]
 args: ["-c", "sleep 1d && echo Sleep expired > /dev/termination-log"]

116 Worker in Kubernetes

https://build.opensuse.org/package/show/home:sjamgade:branches:OBS:Server:Unstable/OBS-Appliance
https://build.opensuse.org/package/show/home:sjamgade:branches:OBS:Server:Unstable/OBS-Appliance

 image: docker.io/library/obsworker
 imagePullPolicy: Never
 resources:
 limits:
 devices.kubevirt.io/kvm: "1"
 requests:
 cpu: 100m
 devices.kubevirt.io/kvm: "1"
 securityContext:
 capabilities:
 add:
 - NET_ADMIN
 - SYS_NICE
 privileged: false
 runAsUser: 0
 volumeMounts:
 - name: boot-dir
 mountPath: /boot
 - name: modules-dir
 mountPath: /lib/modules
 volumes:
 - name: boot-dir
 hostPath:
 path: /boot
 - name: modules-dir
 hostPath:
 path: /lib/modules
 hostname: obs-worker-1

apiVersion: v1
kind: Service
metadata:
 name: myobsservice
 labels:
 servicename: obsworkerservicename
spec:
 selector:
 app: obsworkerappname
 type: NodePort
 externalTrafficPolicy: "Local"
 ports:
 - name: woker-1
 protocol: TCP
 port: 32515
 targetPort: 32515
 nodePort: 32315
 - name: woker-2

117 Worker in Kubernetes

 protocol: TCP
 port: 32516
 targetPort: 32516
 nodePort: 32516

4. Save the following into a le launchworker.sh . Later use this le to launch the worker.
Make sure you uncomment the OBS_REPO_SERVERS line and change the IP address to
your build servers address

cat << EOH > /etc/buildhost.config
OBS_WORKER_DIRECTORY=/var/cache/obs/worker
OBS_CACHE_DIR=/var/cache/obs/worker/cache
OBS_CACHE_SIZE=50140
CHANGE THIS TO YOUR SERVER ADDRESS
OBS_REPO_SERVERS=192.168.132.113:5252
####
OBS_WORKER_INSTANCES=1
OBS_WORKER_PORTBASE=32516
OBS_WORKER_TEST_MODE=1
OBS_VM_TYPE=kvm
OBS_WORKER_WIPE_AFTER_BUILD=1
EOH

obsworker restart

5. Use the following command to launch the build service worker.

cat launchworker.sh | kubectl exec -i -t test-worker-pod bash

118 Worker in Kubernetes

5 Troubleshooting

Here are two major classes of problems regarding the Open Build Service:

1. Normal package build errors

2. Bugs, resource shortage or config issues caused issues

The rst category are errors like missing dependent packages in the build environment, errors
during compiling or linking, errors in the build description and so on. Most of them should not
happen if the packager does test the build locally before committing it to the OBS. This type of
problems is not covered by this chapter.

5.1 General Hints

If you detect unexpected behavior of the open build service, you should follow some rules to
locate the problem:

1. Consult the log les, for the back-end look at /srv/obs/log for the back-end log les and /
srv/www/obs/api/log for the front-end log les. See the Log les Section 2.2, “Log Files” for
more details.

2. Consult the normal OS system logs and the kernel log (dmesg) if here are reported system
or HW problems.

3. Check if all services are running on the back-end and front-end. See the OBS Architecture
in reference book for details.

4. Try to nd an easy way to reproduce the problem.

5. To check whether this issue was already reported, see https://github.com/openSUSE/open-

build-service .

6. Use search machines (Google) to nd out if others did also run into this problem. If you
are lucky, you will nd a x or workaround as well.

7. If you create a new bug report, include all information to reproduce the problem and the
complete error message/error log if here are any.

119 General Hints

https://github.com/openSUSE/open-build-service
https://github.com/openSUSE/open-build-service

5.2 Debugging Front-end Problems
If you get unexpected results from submitting commands with the osc tool, you can use the
debug feature of the tools to nd more information about what happened.

osc debug options

--debugger jump into the debugger before executing anything
--post-mortem jump into the debugger in case of errors
-t, --traceback print call trace in case of errors
-H, --http-debug debug HTTP traffic (filters some headers)
--http-full-debug debug HTTP traffic (filters no headers)
-d, --debug print info useful for debugging

The --debugger and --post-mortem are only suitable for osc developers. If you get an error mes-
sage from osc, the -t, --traceback can give the developer some more information about the
problem. The -H, --http-debug and --http-full-debug options are useful to see the raw answers
of OBS API, often this gives a hint what maybe wrong. If you report a problem regarding the osc
tool, it may help to include the osc output with additional *--http-debug --traceback options.

Warning
With --http-full-debug all http headers are included, this may include user data and au-
thentication stu so review and replace such data with XXXXXXXX or so before you post
it on the internet.

120 Debugging Front-end Problems

6 Setting Up a Local OBS Instance

This chapter explains how you could setup/Install/test OBS in your system. This chapter is
written for those who are not so familiar with Linux and OBS. So in case you are confident to
set up OBS, skip this chapter. Following would be explained in this chapter.

OBS 1 click install, then manual setup in openSUSE 13.1;

OBS 1 click install, then manual setup in SLES11;

OBS test run on Microsoft Windows using VMware player;

OBS appliance installed manually in a VirtualBox.

Unfortunately, didn't have a chance to install OBS in other Linux distribution yet. The last section
will explain your rst steps with the new OBS server.

How you could install and purchase openSUSE 13.1 and SLES12 will not be explained in this
chapter. VMware player install and purchase also will not be explained. For these topics, you
could visit for help:

http://software.opensuse.org/131/en

http://www.suse.com/products/server/

http://my.vmware.com/web/vmware/

free#desktop_end_user_computing/vmware_player/6_0

6.1 Testing OBS on Microsoft Windows Using VMware
Player
Those who are not familiar with Linux can run and test OBS. To run and test OBS in Windows,
you could use a virtual machine program such as VMware or VirtualBox, etc. This chapter
explains, how you can run OBS using VMware player. To check and test with VirtualBox or
another virtual machine, check in below.

After you are done installing VMware player on Windows, you need to download the OBS ap-
pliance program. You could get OBS appliance le by visiting http://openbuildservice.org/down-

load/other/ and clicking on VirtualBox/VMware Image. After downloading, uncompress with
some Windows archiving program that understands the .tar.bz2 le format.

121 Testing OBS on Microsoft Windows Using VMware Player

http://software.opensuse.org/131/en
http://www.suse.com/products/server/
http://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_player/6_0
http://my.vmware.com/web/vmware/free#desktop_end_user_computing/vmware_player/6_0
http://openbuildservice.org/download/other/
http://openbuildservice.org/download/other/

Now, open VMware Player application and select File Open a Virtual Machine, or you could
press Ctrl – O directly. Open the decompressed virtual machine in Open Virtual Machine dialog
box. Click on Play virtual machine icon or hyper link in VMware player.

At the Linux prompt, you can login using "root" as a login name and "opensuse" as a password.
Now, OBS local instance should be already loaded and running in your system. To make sure
that the OBS Web UI is successfully up and running, open the OBS Web UI.

To access OBS Web user interface, open your web browser and try the address http://
vm.ip.address . You can check the virtual machine's IP address by using ifconfig Linux com-
mand. Now, you probably could see a screen like the one below in your window:

To login your local OBS instance, you could use default login name as "Admin" and password
as "opensuse". Check if you could login properly by clicking Login on your local OBS instance
Web UI.

6.2 Installing a Readymade OBS Appliance in a
VirtualBox

This method is slightly less easy than the method using the readymade vmdk VMware disk,
but it enables you to determine the size of your virtual disks to your convenience. It could also
work with a real computer with two disks. It requires some knowledge of command line and
partitioning.

1. Download the OBS appliance installer. Visit: http://www.openbuildservice.org/download

and press the Download the OBS Appliance Installer button. It will start downloading an
ISO image.

2. In VirtualBox, create a virtual machine with:

4 GB memory

1 virtual hard disk of 20 G for / and /var/cache/obs

1 virtual hard disk of 50 G for /srv/obs

a virtual CD-ROM driver pointing to the downloaded ISO image

network bridging with real Ethernet card

122 Installing a Readymade OBS Appliance in a VirtualBox

http://www.openbuildservice.org/download

3. Boot the virtual machine and choose to install the OBS server on the smaller virtual hard
disk.

4. Log into the virtual machine with Login: root and Password: opensuse. If needed, switch
to German/French/whatever keyboard: # loadkeys de . Inspect partitioning: # df -h .
It shows you that the root partition is small and already almost full (1.6 GB used out of
1.8). Let's prepare the other partitions to get a bit more working space. First, # fdisk /
dev/sda and prepare /dev/sda2 to use the remaining space. Second, # fdisk /dev/
sdb and prepare /dev/sdb1 to use all the space, with type 8e (Linux LVM):

 # pvcreate /dev/sdb1
 # vgcreate OBS /dev/sdb1
 # lvcreate -n server -L 48G OBS
 # mkfs.ext4 /dev/OBS/server

5. Reboot, this time onto the hard disk. The CD-ROM might be disconnected, we will not
need it anymore. Log in as root user, change keyboard if needed, and format /dev/sda2 :
mkfs.ext4 /dev/sda2 . Add following entry to /etc/fstab:

/dev/sda2 /var/cache/obs ext4 defaults 2 1

Mount the new partition: # mount /dev/sda2 . Get your IP address: # ifconfig .

6.3 First Steps with Your New OBS Server

At this point, one of the methods above should have provided you with a running OBS instance.
Let us get our rst package building.

1. From a web browser, access the web interface: https://vm.ip.address/. Accept the self-
signed certificate.

2. In the top right corner of the web interface, there is a Log In option. Use it to log in as:
Admin opensuse.

3. Click on the Configuration button to give your server a name and a description. Click on
the Interconnect option. Choose openSUSE as the remote repository where we will pick up
the packages of the build environment. Log out of the web interface.

4. Use Sign Up option to create a regular user account (for example: hmustermann).

123 First Steps with Your New OBS Server

5. As this normal user, click on the Home Project option and create your home project (that
would be: "home:hmustermann").

6. Go to this home project, and click on Create package to create your rst package (let's say:
"mypackage").

7. Go back to your home project, and click the Repositories button. Choose to add a new
repository and pick openSUSE 13.1 (for example).

8. Reboot the virtual machine to ensure all projects are rescanned.

9. From outside the virtual machine and as a normal user, declare in ~/.oscrc your new
OBS user:

[https://vm.ip.address]
user=hmustermann
pass=bond007

then checkout your new package: $ osc -A https://vm.ip.address co home:h-
mustermann . go to your rst package: $ cd home:hmustermann/mypackage . and add
some sources there (tarball, spec le, changelog, patches). Check them in, then trigger a
remote build:

$ osc add *
$ osc commit
$ osc rebuild

10. The built packages can be seen at: http://vm.ip.address:82/

124 First Steps with Your New OBS Server

A GNU Licenses
This appendix contains the GNU General Pub-
lic License version 2 and the GNU Free Docu-
mentation License version 1.2.

GNU General Public License

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc. 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share
and change free software--to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered
by the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free
software (and charge for this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it in new free programs; and
that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for
you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone under-
stands that there is no warranty for this free software. If the software is modified by someone
else and passed on, we want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original authors’ reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the
danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must
be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR

COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the

copyright holder saying it may be distributed under the terms of this General Public License.

The “Program”, below, refers to any such program or work, and a “work based on the Pro-

gram” means either the Program or any derivative work under copyright law: that is to say,

a work containing the Program or a portion of it, either verbatim or with modifications and/

or translated into another language. (Hereinafter, translation is included without limitation

in the term “modification”.) Each licensee is addressed as “you”.

Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you receive

it, in any medium, provided that you conspicuously and appropriately publish on each copy

an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that

refer to this License and to the absence of any warranty; and give any other recipients of the

Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a

work based on the Program, and copy and distribute such modifications or work under the

terms of Section 1 above, provided that you also meet all of these conditions:

a). You must cause the modified les to carry prominent notices stating that you changed

the les and the date of any change.

b). You must cause any work that you distribute or publish, that in whole or in part contains

or is derived from the Program or any part thereof, to be licensed as a whole at no charge to

all third parties under the terms of this License.

c). If the modified program normally reads commands interactively when run, you must

cause it, when started running for such interactive use in the most ordinary way, to print or

display an announcement including an appropriate copyright notice and a notice that there

is no warranty (or else, saying that you provide a warranty) and that users may redistribute

the program under these conditions, and telling the user how to view a copy of this License.

(Exception: if the Program itself is interactive but does not normally print such an announce-

ment, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be
on the terms of this License, whose permissions for other licensees extend to the entire whole,
and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written
entirely by you; rather, the intent is to exercise the right to control the distribution of deriv-
ative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in

object code or executable form under the terms of Sections 1 and 2 above provided that you

also do one of the following:

125

a). Accompany it with the complete corresponding machine-readable source code, which

must be distributed under the terms of Sections 1 and 2 above on a medium customarily used

for software interchange; or,

b). Accompany it with a written offer, valid for at least three years, to give any third party,

for a charge no more than your cost of physically performing source distribution, a complete

machine-readable copy of the corresponding source code, to be distributed under the terms

of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c). Accompany it with the information you received as to the offer to distribute corresponding

source code. (This alternative is allowed only for noncommercial distribution and only if you

received the program in object code or executable form with such an offer, in accord with

Subsection b above.)

The source code for a work means the preferred form of the work for making modifications
to it. For an executable work, complete source code means all the source code for all modules
it contains, plus any associated interface definition les, plus the scripts used to control com-
pilation and installation of the executable. However, as a special exception, the source code
distributed need not include anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the operating system on
which the executable runs, unless that component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated
place, then offering equivalent access to copy the source code from the same place counts
as distribution of the source code, even though third parties are not compelled to copy the
source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro-

vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute the

Program is void, and will automatically terminate your rights under this License. However,

parties who have received copies, or rights, from you under this License will not have their

licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing

else grants you permission to modify or distribute the Program or its derivative works. These

actions are prohibited by law if you do not accept this License. Therefore, by modifying or

distributing the Program (or any work based on the Program), you indicate your acceptance

of this License to do so, and all its terms and conditions for copying, distributing or modifying

the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient

automatically receives a license from the original licensor to copy, distribute or modify the

Program subject to these terms and conditions. You may not impose any further restrictions

on the recipients’ exercise of the rights granted herein. You are not responsible for enforcing

compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any

other reason (not limited to patent issues), conditions are imposed on you (whether by court

order, agreement or otherwise) that contradict the conditions of this License, they do not ex-

cuse you from the conditions of this License. If you cannot distribute so as to satisfy simul-

taneously your obligations under this License and any other pertinent obligations, then as a

consequence you may not distribute the Program at all. For example, if a patent license would

not permit royalty-free redistribution of the Program by all those who receive copies directly

or indirectly through you, then the only way you could satisfy both it and this License would

be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circum-
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by

patents or by copyrighted interfaces, the original copyright holder who places the Program

under this License may add an explicit geographical distribution limitation excluding those

countries, so that distribution is permitted only in or among countries not thus excluded. In

such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General

Public License from time to time. Such new versions will be similar in spirit to the present

version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and “any later version”, you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distrib-

ution conditions are different, write to the author to ask for permission. For software which

is copyrighted by the Free Software Foundation, write to the Free Software Foundation; we

sometimes make exceptions for this. Our decision will be guided by the two goals of preserv-

ing the free status of all derivatives of our free software and of promoting the sharing and

reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRAN-

TY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT

WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER

PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER

126

EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS

TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE

PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,

REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM-

AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT

LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUS-

TAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH

ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED

OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start
of each source le to most effectively convey the exclusion of warranty; and each le should
have at least the “copyright” line and a pointer to where the full notice is found.

 one line to give the program’s name and an idea of what it does.
 Copyright (C) yyyy name of author

 This program is free software; you can redistribute it and/or
 modify it under the terms of the GNU General Public License
 as published by the Free Software Foundation; either version 2
 of the License, or (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an in-
teractive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
 type `show w’. This is free software, and you are welcome
 to redistribute it under certain conditions; type `show c’
 for details.

The hypothetical commands `show w’ and `show c’ should show the appropriate parts of the
General Public License. Of course, the commands you use may be called something other than
`show w’ and `show c’; they could even be mouse-clicks or menu items--whatever suits your
program.

You should also get your employer (if you work as a programmer) or your school, if any, to
sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright

 interest in the program `Gnomovision’
 (which makes passes at compilers) written
 by James Hacker.

 signature of Ty Coon, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the GNU

Lesser General Public License (http://www.fsf.org/licenses/lgpl.html) instead of this License.

GNU Free Documentation License

Version 1.2, November 2002

Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful
document “free” in the sense of freedom: to assure everyone the effective freedom to copy
and redistribute it, with or without modifying it, either commercially or noncommercially.
Secondarily, this License preserves for the author and publisher a way to get credit for their
work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which
is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free
software needs free documentation: a free program should come with manuals providing the
same freedoms that the software does. But this License is not limited to software manuals; it
can be used for any textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose is instruction
or reference.

APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a
notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under
the conditions stated herein. The “Document”, below, refers to any such manual or work. Any
member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion
of it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that
deals exclusively with the relationship of the publishers or authors of the Document to the
Document’s overall subject (or to related matters) and contains nothing that could fall directly
within that overall subject. (Thus, if the Document is in part a textbook of mathematics, a
Secondary Section may not explain any mathematics.) The relationship could be a matter
of historical connection with the subject or with related matters, or of legal, commercial,
philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being
those of Invariant Sections, in the notice that says that the Document is released under this
License. If a section does not t the above definition of Secondary then it is not allowed to be
designated as Invariant. The Document may contain zero Invariant Sections. If the Document
does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or
Back-Cover Texts, in the notice that says that the Document is released under this License. A
Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a for-
mat whose specification is available to the general public, that is suitable for revising the doc-
ument straightforwardly with generic text editors or (for images composed of pixels) generic
paint programs or (for drawings) some widely available drawing editor, and that is suitable
for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent le format whose markup,
or absence of markup, has been arranged to thwart or discourage subsequent modification
by readers is not Transparent. An image format is not Transparent if used for any substantial
amount of text. A copy that is not “Transparent” is called “Opaque”.

127

http://www.fsf.org/licenses/lgpl.html
http://www.fsf.org/licenses/lgpl.html

Examples of suitable formats for Transparent copies include plain ASCII without markup, Tex-
info input format, LaTeX input format, SGML or XML using a publicly available DTD, and stan-
dard-conforming simple HTML, PostScript or PDF designed for human modification. Examples
of transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary
formats that can be read and edited only by proprietary word processors, SGML or XML for
which the DTD and/or processing tools are not generally available, and the machine-generat-
ed HTML, PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages
as are needed to hold, legibly, the material this License requires to appear in the title page.
For works in formats which do not have any title page as such, “Title Page” means the text
near the most prominent appearance of the work’s title, preceding the beginning of the body
of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precise-
ly XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when
you modify the Document means that it remains a section “Entitled XYZ” according to this
definition.

The Document may include Warranty Disclaimers next to the notice which states that this
License applies to the Document. These Warranty Disclaimers are considered to be included
by reference in this License, but only as regards disclaiming warranties: any other implication
that these Warranty Disclaimers may have is void and has no effect on the meaning of this
License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncom-
mercially, provided that this License, the copyright notices, and the license notice saying this
License applies to the Document are reproduced in all copies, and that you add no other con-
ditions whatsoever to those of this License. You may not use technical measures to obstruct
or control the reading or further copying of the copies you make or distribute. However, you
may accept compensation in exchange for copies. If you distribute a large enough number of
copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the
Document, numbering more than 100, and the Document’s license notice requires Cover Texts,
you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers
must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may
add other material on the covers in addition. Copying with changes limited to the covers, as
long as they preserve the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to t legibly, you should put the
rst ones listed (as many as t reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you
must either include a machine-readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a computer-network location from which the general net-
work-using public has access to download using public-standard network protocols a complete
Transparent copy of the Document, free of added material. If you use the latter option, you
must take reasonably prudent steps, when you begin distribution of Opaque copies in quanti-
ty, to ensure that this Transparent copy will remain thus accessible at the stated location until
at least one year after the last time you distribute an Opaque copy (directly or through your
agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before
redistributing any large number of copies, to give them a chance to provide you with an
updated version of the Document.

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of
sections 2 and 3 above, provided that you release the Modified Version under precisely this
License, with the Modified Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,

and from those of previous versions (which should, if there were any, be listed in the History

section of the Document). You may use the same title as a previous version if the original

publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship

of the modifications in the Modified Version, together with at least ve of the principal authors

of the Document (all of its principal authors, if it has fewer than ve), unless they release

you from this requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

D. Preserve all the copyright notices of the Document.

E. Add an appropriate copyright notice for your modifications adjacent to the other copyright

notices.

F. Include, immediately after the copyright notices, a license notice giving the public permis-

sion to use the Modified Version under the terms of this License, in the form shown in the

Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts

given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at

least the title, year, new authors, and publisher of the Modified Version as given on the Title

Page. If there is no section Entitled “History” in the Document, create one stating the title,

year, authors, and publisher of the Document as given on its Title Page, then add an item

describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Trans-

parent copy of the Document, and likewise the network locations given in the Document for

previous versions it was based on. These may be placed in the “History” section. You may

omit a network location for a work that was published at least four years before the Document

itself, or if the original publisher of the version it refers to gives permission.

128

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the

section, and preserve in the section all the substance and tone of each of the contributor

acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their

titles. Section numbers or the equivalent are not considered part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the

Modified Version.

N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with

any Invariant Section.

O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Se-
condary Sections and contain no material copied from the Document, you may at your option
designate some or all of these sections as invariant. To do this, add their titles to the list of
Invariant Sections in the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorse-
ments of your Modified Version by various parties--for example, statements of peer review
or that the text has been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to ve words as a Front-Cover Text, and a passage of up to 25
words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only
one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through
arrangements made by) any one entity. If the Document already includes a cover text for the
same cover, previously added by you or by arrangement made by the same entity you are
acting on behalf of, you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use
their names for publicity for or to assert or imply endorsement of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under
the terms defined in section 4 above for modified versions, provided that you include in the
combination all of the Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its license notice, and that you
preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invari-
ant Sections may be replaced with a single copy. If there are multiple Invariant Sections with
the same name but different contents, make the title of each such section unique by adding
at the end of it, in parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled
“Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections
Entitled “Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under
this License, and replace the individual copies of this License in the various documents with a
single copy that is included in the collection, provided that you follow the rules of this License
for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under
this License, provided you insert a copy of this License into the extracted document, and follow
this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent docu-
ments or works, in or on a volume of a storage or distribution medium, is called an “aggre-
gate” if the copyright resulting from the compilation is not used to limit the legal rights of the
compilation’s users beyond what the individual works permit. When the Document is included
in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then
if the Document is less than one half of the entire aggregate, the Document’s Cover Texts
may be placed on covers that bracket the Document within the aggregate, or the electronic
equivalent of covers if the Document is in electronic form. Otherwise they must appear on
printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the
Document under the terms of section 4. Replacing Invariant Sections with translations requires
special permission from their copyright holders, but you may include translations of some
or all Invariant Sections in addition to the original versions of these Invariant Sections. You
may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this
License and the original versions of those notices and disclaimers. In case of a disagreement
between the translation and the original version of this License or a notice or disclaimer, the
original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”,
the requirement (section 4) to Preserve its Title (section 1) will typically require changing
the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly pro-
vided for under this License. Any other attempt to copy, modify, sublicense or distribute the
Document is void, and will automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documen-
tation License from time to time. Such new versions will be similar in spirit to the present ver-
sion, but may differ in detail to address new problems or concerns. See http://www.gnu.org/
copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you
have the option of following the terms and conditions either of that specified version or of
any later version that has been published (not as a draft) by the Free Software Foundation. If
the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.2
 or any later version published by the Free Software Foundation;
 with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
 A copy of the license is included in the section entitled “GNU
 Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with...Texts.” line with this:

 with the Invariant Sections being LIST THEIR TITLES, with the
 Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three,
merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU General
Public License, to permit their use in free software.

129

	Administrator Guide
	About this Guide
	1. Available Documentation
	2. Feedback
	3. Documentation Conventions
	4. Contributing to the Documentation

	Chapter 1. Installation and Configuration
	1.1. Planning
	1.1.1. Resource Planning

	1.2. Simple Installation
	1.2.1. Back-end Installation
	1.2.1.1. Cloud Upload Setup
	1.2.1.1.1. AWS Amazon Cloud
	1.2.1.1.1.1. Authentication Workflow
	1.2.1.1.1.2. Credentials Setup

	1.2.1.1.2. Microsoft Azure
	1.2.1.1.2.1. Authentication Workflow
	1.2.1.1.2.2. Configuration
	1.2.1.1.2.3. Credentials setup

	1.2.2. Front-end Installation
	1.2.2.1. MySQL Setup
	1.2.2.2. Apache Setup
	1.2.2.3. API Configuration

	1.2.3. Online Configuration

	1.3. Worker Farm
	1.4. Distributed Setup
	1.5. Monitoring
	1.5.1. Endpoint Checks
	1.5.1.1. HTTP Checks: Checking Whether the HTTP Server Responds

	1.5.2. Common Checks
	1.5.2.1. Disk Space: Checking Available Disk Space
	1.5.2.2. Memory Usage: Checking Available Memory
	1.5.2.3. NTP: Checking Date and Time
	1.5.2.4. Ping: Checking That the Server Is Alive
	1.5.2.5. Load: Checking the Load on the Server
	1.5.2.6. Disk Health: Checking the Health of Local Hard Disks

	1.5.3. Other Checks
	1.5.3.1. MySQL: Checking That the MySQL Database Is Responding
	1.5.3.2. Backup Status: Checking That a Valid Backup Is Available

	Chapter 2. File System Overview
	2.1. Configuration Files
	2.1.1. Front-end Configuration
	2.1.1.1. database.yml
	2.1.1.2. options.yml
	2.1.1.3. feature.yml
	2.1.1.4. Apache Virtual Host obs.conf

	2.1.2. Back-end Configuration
	2.1.2.1. /etc/sysconfig/obs-server
	2.1.2.2. BSConfig.pm

	2.2. Log Files
	2.2.1. Front-end
	2.2.2. Back-end

	2.3. /srv/obs Tree
	2.3.1. build Directory
	2.3.2. cloudupload Directory
	2.3.3. db Directory
	2.3.4. diffcache Directory
	2.3.5. events Directory
	2.3.6. info Directory
	2.3.7. jobs Directory
	2.3.8. log Directory
	2.3.9. projects Directory
	2.3.10. remotecache Directory
	2.3.11. repos Directory
	2.3.12. repos_sync Directory
	2.3.13. run Directory
	2.3.14. sources Directory
	2.3.15. trees Directory
	2.3.16. upload Directory
	2.3.17. workers Directory

	2.4. Metadata
	2.4.1. OBS Revision Control
	2.4.1.1. OBS revision control files
	2.4.1.2. OBS Revision API

	2.4.2. Project Metadata
	2.4.3. Package Metadata
	2.4.4. Attribute Metadata
	2.4.5. Job Files

	Chapter 3. Security Concepts
	3.1. General Paradigm
	3.1.1. Frontend
	3.1.1.1. Access to Mirror Servers
	3.1.1.2. Access to the Public Network
	3.1.1.3. Worker network
	3.1.1.4. Signer network

	3.1.2. Build Environment
	3.1.3. Source Revision System
	3.1.4. Permission Handling
	3.1.5. Signature Handling

	3.2. Trust Zones
	3.2.1. Public Zones
	3.2.1.1. External Network
	3.2.1.2. Untrusted Code

	3.2.2. Demilitarized Zone (DMZ)
	3.2.2.1. Open Build Service Frontend
	3.2.2.2. Open Build Service Frontend Background Services
	3.2.2.3. Stage Server
	3.2.2.4. Cloud Uploader
	3.2.2.5. Source Service Server

	3.2.3. Internal Zone
	3.2.3.1. Open Build Service Source Server
	3.2.3.2. Open Build Service Binary Servers
	3.2.3.3. External Dependencies

	3.2.4. Worker Zone
	3.2.5. Signing Server

	Chapter 4. Administration
	4.1. Tools
	4.1.1. obs_admin
	4.1.2. osc
	4.1.2.1. osc meta Subcommand
	4.1.2.2. osc api Subcommand

	4.2. Managing Build Targets
	4.2.1. Interconnect
	4.2.2. Importing Distributions

	4.3. Source Services
	4.3.1. Using Services for Validation
	4.3.2. Different Modes When Using Services
	4.3.2.1. Default Mode
	4.3.2.2. trylocal Mode
	4.3.2.3. localonly Mode
	4.3.2.4. serveronly Mode
	4.3.2.5. buildtime Mode
	4.3.2.6. disabled Mode

	4.3.3. Storage of Source Service Definitions
	4.3.4. Dropping a Source Service Again

	4.4. Source Publisher
	4.4.1. Configuring Source Publisher
	4.4.2. Considerations

	4.5. Dispatch Priorities
	4.5.1. The /build/_dispatchprios API Call
	4.5.2. dispatch_adjust Array

	4.6. Publisher Hooks
	4.6.1. Configuring Publisher Hooks
	4.6.2. Example Publisher Scripts
	4.6.2.1. Simple Publisher Hook
	4.6.2.2. Advanced Publisher Hook

	4.7. Unpublisher Hooks
	4.7.1. Configuring Unpublisher Hooks
	4.7.2. Example Unpublisher Scripts
	4.7.2.1. Simple Unpublisher Hook
	4.7.2.2. Advanced Unpublisher Hook

	4.8. Managing Users and Groups
	4.8.1. User and Group Roles
	4.8.2. Standalone User and Group Database
	4.8.3. Users and Group Maintainers
	4.8.4. Gravatar for Groups
	4.8.5. Proxy Mode
	4.8.5.1. OBS Proxy Mode Configuration

	4.8.6. LDAP/Active Directory
	4.8.6.1. OBS LDAP Configuration

	4.8.7. Authentication Methods
	4.8.7.1. LDAP Methods
	4.8.7.2. Kerberos
	4.8.7.3. OBS Token Authorization
	4.8.7.3.1. Managing Tokens of a User
	4.8.7.3.2. Executing a Source Service

	4.9. Message Bus for Event Notifications
	4.9.1. RabbitMQ
	4.9.1.1. Configuration

	4.10. Backup
	4.10.1. Places to consider
	4.10.1.1. Frontend Configuration
	4.10.1.2. Frontend Database
	4.10.1.3. Backend Configuration
	4.10.1.4. Backend Content

	4.10.2. Backup strategies
	4.10.2.1. Database
	4.10.2.2. Sources
	4.10.2.3. Build Results

	4.11. Restore
	4.11.1. Check and repair database inconsistencies
	4.11.2. Binaries

	4.12. Repair Data Corruption
	4.13. Spider Identification
	4.14. Worker in Kubernetes

	Chapter 5. Troubleshooting
	5.1. General Hints
	5.2. Debugging Front-end Problems

	Chapter 6. Setting Up a Local OBS Instance
	6.1. Testing OBS on Microsoft Windows Using VMware Player
	6.2. Installing a Readymade OBS Appliance in a VirtualBox
	6.3. First Steps with Your New OBS Server

	Appendix A. GNU Licenses
	A.1. GNU General Public License
	A.1.1. Preamble
	A.1.2. GNU GENERAL PUBLIC LICENSE TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
	A.1.2.1. NO WARRANTY
	A.1.2.2. END OF TERMS AND CONDITIONS

	A.1.3. How to Apply These Terms to Your New Programs

	A.2. GNU Free Documentation License
	A.2.1. PREAMBLE
	A.2.2. APPLICABILITY AND DEFINITIONS
	A.2.3. VERBATIM COPYING
	A.2.4. COPYING IN QUANTITY
	A.2.5. MODIFICATIONS
	A.2.6. COMBINING DOCUMENTS
	A.2.7. COLLECTIONS OF DOCUMENTS
	A.2.8. AGGREGATION WITH INDEPENDENT WORKS
	A.2.9. TRANSLATION
	A.2.10. TERMINATION
	A.2.11. FUTURE REVISIONS OF THIS LICENSE
	A.2.12. ADDENDUM: How to use this License for your documents

